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BAasics OF MOM4

The purpose of this part of the MOM4 Guide is to familiarize the reader with
the basics of MOM4. There are two chapters, with the first providing an overview
of MOM4 and its relation to other versions of MOM. The second chapter provides
details of the computational aspects of MOM4. This part of the book should satisfy
those readers most interested in a quick overview and summary of MOM.
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The Modular Ocean Model (MOM) is a numerical representation of the ocean’s
hydrostatic primitive equations. It is designed primarily as a tool for studying the
ocean climate system. The purpose of this chapter is to introduce the Modular
Ocean Model (MOM) and to provide an overview of this document. Information
about how to download and run MOM4 can be found at
http:/ /nomads.gfdl.noaa.gov /.
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1.1 What is MOM?

The Modular Ocean Model (MOM) is a numerical representation of the ocean’s
hydrostatic primitive equations. It is designed primarily as a tool for studying the
ocean climate system. The model is developed and supported by researchers at
NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL), with contributions also
provided by researchers worldwide. The model is freely available via
www.gfdl.noaa.gov/~fms

MOM evolved from numerical ocean models developed in the 1960’s-1980’s
by Kirk Bryan and Mike Cox at GFDL. Most notably, the first internationally re-
leased and supported primitive equation ocean model was developed by Mike Cox
([ ]). It cannot be emphasized enough how revolutionary it was in 1984
to freely release, support, and document code for use in numerical ocean climate
modeling. The Cox-code provided scientists with a powerful tool to investigate
basic and applied questions about the ocean and its interactions with other compo-
nents of the climate system. Previously, rational investigations of such questions by
most scientists were limited to restrictive idealized models and analytical methods.
Quite simply, the Cox-code started what has today become a right-of-passage for
every high-end numerical model of dynamical earth systems.

Upon the untimely passing of Mike Cox in 1990, Ron Pacanowski, Keith Dixon,

and Tony Rosati rewrote the Cox code with an eye on new ideas of modular pro-
gramming in Fortran 77. The result was the first version of MOM ([
Version 2 of MOM (] ]) introduced the memory window idea,
which was a generalization of the vertical-longitudinal slab approach used in the
Cox-code and MOMI1. Both of these methods were driven by the desires of mod-
elers to run large experiments on machines with relatively small memories. The
memory window provided enhanced flexibility to incorporate higher order numer-
ics, whereas slabs used in the Cox-code and MOMI1 restricted the numerics to sec-
ond order. MOM3 ([ ]) even more fully exploited the
memory window with a substantial number of physics and numerics options.

The Cox-code and each version of MOM came with a manual. Besides describ-
ing the elements of the code, these manuals aimed to provide transparency to the
rationale underlying the model’s numerics. Without such, the model could in many
ways present itself as a black box, thus greatly hindering its utility to the researcher.
This philosophy of documentation saw its most significant realization in the MOM3
Manual, which reaches to 680 pages. The present document is written with this
philosophy in mind, yet allows itself to rely somewhat on details provided in the
previous manuals as well as theoretical discussions given by [ I

The most recent version of MOM is version 4. The origins of MOM4 date back
to a transition from vector to parallel computers at GFDL, starting near 1999. Other
models successfully made the transition some years earlier (e.g., The Los Alamos
Parallel Ocean Program (POP) and the OCCAM model from Southampton, UK).
New computer architectures generally allow far more memory than previously
available, thus removing many of the reasons for the slabs and memory window
approaches used in earlier versions of MOM. Hence, we concluded that the mem-
ory window should be jettisoned in favor of a straightforward horizontal 2D do-
main decomposition. Thus began the project to redesign MOM for use on parallel
machines.
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1.2 Release of MOMA4.0 October 2003

As may be anticipated, when physical scientists aim to rewrite code based on soft-
ware engineering motivations, more than software issues are addressed. During
the writing of MOM4, numerous algorithmic issues were also addressed, with many
physical parameterizations, dynamical schemes, diagnostics, etc., being rewritten
and/or added. Hence, the naively simple task of rewriting MOM3 into MOM4 has
only now matured, after some five years of undertaking.

MOM4 was released twice to the public as a beta-code during the middle of
2002. A third beta release was held September-October, 2004, with only a few ex-
perienced users participating. Significant input from users throughout the MOM
community has assisted in the development of the code. Such evolution of the code
will clearly continue. Nonetheless, the present architecture and overall structure of
MOM4 appears robust enough that we are soliciting general usage from the ocean
modeling community, without the reservations attendant with a beta-release. That
is, we sanction the present code as a full release of MOM4.0.

1.3 MOM4 documentation

The main goal of this document is to provide the ocean climate modeler with a
guide to Version 4 of the Modular Ocean Model (MOM4). In particular, we address
the needs of the those picking up MOM4 and wishing to use the code and to under-
stand many of the numerical details of the code. There are three other documents
written in tandem with the present document:

e The MOM4 Users” Guide. This web-based document is available from the
MOM4-link at
http:/ /nomads.gfdl.noaa.gov/.
The MOM4 Users” Guide provides details necessary to download the source
code and run the model. Here you will also be able to register as a MOM4-
user.

e FUNDAMENTALS OF OCEAN CLIMATE MODELS by [ | presents
a theoretical foundation for ocean climate models, with MOM4 as one exam-
ple. It is here that a rationalization of the model equations and algorithms
are presented. This document will remain available on-line until Sometime
during the early part of 2004, at which time it will be published by Princeton
University Press.

e THE MOM3 MANUAL of [ ] provides a thor-
ough discussion of MOM3, some of which is relevant for MOM4.

1.4 Modeling frameworks

As the field of climate modeling grows, and the realism of numerical models im-
proves, the software engineering issues posed by high-end earth system models
increase in complexity. Additionally, the efficient use of rapidly changing computa-
tional platforms requires expertise beyond the traditional model developer. Hence,
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climate modelers have increased their collaboration with each other and with soft-
ware engineers and computational scientists. The aim of such collaborations is an
improved software infrastructure thus reducing the burden on any particular re-
searcher or group.

1.4.1 The GFDL Flexible Modeling System

To assist with the development of MOM4, we have employed much of the code
developed and supported at GFDL for use in all of its numerical models. This Flex-
ible Modeling System (FMS) is the result of many years (starting in force around
1997-1998) of re-thinking, re-structuring, and re-writing the previously disparate
research codes at GFDL. FMS is designed with the goal of producing code that is
simple to use, simple to understand, simple to modify, well documented, and sup-
ported by a sound base of scientists and engineers at GFDL and elsewhere.

In its broadest terms, FMS aims to remove computational barriers (e.g., code
structure and language, standards, scripts, units, I/O, etc.) between codes used
for the study of dynamical geophysical systems. This goal should not be mis-
taken as a call to unify or homogenize algorithms. Instead, it provides a common
software infrastructure inside of which various algorithms (e.g., different vertical
coordinate choices, dynamical cores, and/or physical parameterizations) coexist.
FMS also aims to provide a common superstructure (e.g., coupler, run-scripts, post-
processing) which allow the various models to communicate with one another, and
for the researcher to communicate with the model code and results.

If the broader climate modeling community can realize these rather idealistic,
and nontrivial, goals, then the choice to use a particular model code can be based
on the physical and numerical attributes of the code, instead of restrictions based
on code style or platform issues. The effort spear-headed by NASA’s Earth System
Modeling Framework (ESMF)
http:/ /www.esmf.ucar.edu)
aims for nothing less.

1.4.2 MOM4 within FMS

Participating within GFDL’s FMS allows for MOM4 to use numerous FMS modules.
The following represents a sample.

e time manager: keeps time and sets time dependent flags

e coupler and data_override: used to couple MOM4 to other component models
and/or datasets.

e [/0O: to read and write data

e initial and boundary data: regrids spherical fields to the generally non-spherical
ocean model grid

e grid and topography specification: sets model grid spacing and interpolates
spherical topography to the model grid

e parallelization tools: for passing messages across parallel processors
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e diagnostic manager: to register and send fields to be written to a file for later
analysis

e field manager: for organizing multiple tracers for use especially in biogeo-
chemistry studies.

Being part of FMS greatly frees up those interested in developing physical and
numerical algorithms to focus on just that, instead of also needing to become ex-
perts in computational platforms and various software engineering issues. It also
allows for efficient input from computational scientists and engineers since they
can more readily focus on computational issues. Finally, it allows us in the ocean
modeling community to play a role in establishing common software infrastruc-
tures and coding standards, such as the ESMF efforts mentioned previously.

The FMS infrastructure was first released to the public earl 2002, with further
releases following on a regular basis. Notably, MOM4 represents the first major
model code to be released within FMS. Full documentation of FMS can be found at
www.gfdl.noaa.gov.

It is here that the researcher will find information about how to download and run
MOM4.

1.4.3 MOM4 on the web

MOM4.0 is released via the GFDL-FMS web site. Originally it was planned that
it would be released via the open source site SourceForge. However, as we wish
to know more about who actually takes the code, it is necessary that we run a
SourceForge-like software locally at GFDL, where all code, documentation, and
bulletin boards are maintained. Note that as we aim to nurture the MOM and FMS
communities, we strongly encourage users to contact developers via one of the
email lists maintained at the FMS web site.

1.5 Some characteristics of MOM4

As with all previous versions of MOM, MOM4 discretizes the ocean’s hydrostatic
primitive equations on a fixed Eulerian grid, with the Arakawa B-grid defining the
horizontal arrangement of model fields. That is, the grid cells live on a lattice fixed
in space-time. Given that MOM4 remains a z-coordinate ocean model, it shares
much with its predecessors. However, there are some notable characteristics that
we highlight in this section.

1.5.1 Streamlining the options

MOMBS arguably contains everything but the proverbial kitchen sink. For example,
when building MOM3, we were uncertain what would be the most suitable external
mode solver for the needs of z-coordinate ocean climate modeling. Hence, we kept
all those ever having been implemented in earlier MOMSs. These methods included
the traditional rigid lid streamfunction of [ ], the rigid lid surface pres-
sure of | Jand [
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the implicit free surface of [ ], and the explicit free sur-
face of | Jand [
After investigations leading to the [

paper, it was concluded that the explicit free surface method is most suitable since
it allows for efficient use of parallel computers while rendering the model’s algo-
rithms physically and numerically sound and simple. Hence, there is only one ex-
ternal mode solver in MOM4, and it is a slight variant of the Griffies et al. method
detailed in [ ].

Other examples abound where numerous options were made available in MOM3
for physical parameterization schemes. Quite simply, MOM3 represented the end
of some ten years of research and experience with various approaches used in
MOM. Building up to that point required testing of numerous options prior to de-
ciding which ones to jettison. The advantage of this approach is that it allows for
ready examination of the many permutations and combinations leading to a well
tuned model. The disadvantage is that is leaves the inexperienced modeler with
little guidance since there are so many options.

In the development of MOM4, we attempted a balance between including mul-
tiple options and hard-line decisions about what would be supported and not sup-
ported. We hope that our choices will be suitable for a broad class of ocean climate
researchers.

1.5.2 Eliminating ifdefs

One of the most noticeable change between MOM3 and MOM4 is that MOM4
has no cpp preprocessor options associated with physical parameterizations, com-
monly known as ifdefs. There remains only a single ifdef associated with code op-
timization (Section 2.7). The proliferation of physics ifdefs in MOM3 presented the
user with a complex menagerie of logical structures (e.g., multiple and nested ifdefs)
to wade through in order to reveal the utilized Fortran code. A rough count of the
ifdefs available in MOMS3.1 came to something between 300 and 400 options, with
multiple permutations allowed! Furthermore, cpp pre-processor options cannot be
checked at compile time for typos. Locally, we experienced numerous occasions
where an ifdef was misspelled, yet the model continued to run using an undesired
piece of code. We suspect that other researchers have had similar unfortunate ex-
periences.

We have done a few things to replace ifdefs. Firstly, as mentioned in the previous
subsection, we made decisions to streamline the supported options. Supporting
one instead of five external mode solvers helped tremendously. Additionally, we
aimed to have the code flexible and simple so that researchers wishing to do some-
thing different will find coding their changes to be a trivial task. Hence, we left
out many smaller options that MOMS3 chose to include. Secondly, we introduced
Fortran if-tests in many places where ifdefs formerly lived. Doing so allows for the
Fortran compiler to detect typos, thus enhancing the quality control aspects of the
model.

Finally, where large chunks of physical parameterization code could be isolated,
we made Fortran modules out of the options. For example, if one wishes to use the
KPP vertical mixing scheme, then
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/mom4/ocean_param/mixing/vert/kpp/ocean_vert_mix_coeff.F90

should be compiled. If instead, one wishes the constant vertical diffusivity ap-
proach, then

/mom4/ocean_param/mixing/vert/const/ocean_vert_mix_coeff.F90

should be compiled. This approach effectively replaces the selection of major ifdef
options with a pointer within a shell script to a desired module. The downside to
this approach is that some code in the different modules is similar, and so there is
a modest increase in code maintenance. The upside is that it cleans up the logic in
the separate modules.

1.5.3 Key computational characteristics

We summarize here some of the computational characteristics of MOM4.

1.5.3.1 Computational aspects: overview

e Asdiscussed in Section 1.4, the computational framework (i.e., infrastructure
and superstructure) upon which MOM4 is based is that of the GFDL Flexible
Modeling System (FMS).

e All code is Fortran 90.

e There is only a single cpp-preprocessor option (i.e., i fdef) associated with the
static memory option (Section 2.7). Files which use this ifdef must have the
extension .F90, whereas files with no cpp-preprocessor options have a .f90
extension.

e 3D arrays are dimensioned (i, j, k) instead of the slab-like (i, k, j) structure
used in earlier MOMs. Consequently, there is no memory window or slabs. It
is essentially for these reasons, plus the increased elegance of Fortran 90, that
algorithm development and coding is far simpler with MOM4 than earlier
MOMs.

¢ 2D (latitudinal /longitudinal) horizontal domain decomposition is the model
standard of use on single or multiple parallel processors.

e Multiple tracers are managed using the FMS field manager that organizes tracer
names, fluxes, sources, initializations, restarts, advection schemes, etc. This
manager was written, in particular, to serve the needs of ocean biogeochem-
istry research, as well as for use by atmospheric chemists.

e The FMS diagnostic manager is used to register and send fields to output for
analysis. The diagnostic manager and asociated diagnostic table allows for
the trivial addition of a new field to be added to the suite of model diagnostics
available for an experiment. This manager has been found to be extremely
useful and powerful.

e 1/0 is generally written in NetCDF. This capability includes files for restarts,
boundary forcing, initialization, topography, grids, sponges, etc. Some native
format capabilities remain, but with less support by GFDL than NetCDF.
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1.5.3.2 Computational aspects: derived types

Motivated by the desire to use MOM4 for a broad range of applications, data flow
between the various modules has been streamlined through the use of derived type
structures available in F90. The use of derived types, for instance, eases the devel-
opment of ocean data assimilation systems using mom4, and faciliates generalized
managing of biogeochemical tracers. The 1 and beta2 releases of mom4 used very
few derived types. It is therefore useful to highlight some of their advantages.

User-friendliness - various inputs and outputs to MOM'’s routines are more
clearly defined and protected with the {90 intent attribute.

Maintainability - algorithmic changes requiring additional variables can be
easily imbedded within the type structures.

Enhanced modularity - fewer dependencies between the modules. This leads to
clarity within the code and easier development.

We provide details of the derived types used in MOM4.0 in Section 2.1.

1.5.4 Key numerical characteristics

Here we summarize some of the numerical aspects of MOM4.

The model uses generalized orthogonal horizontal coordinates, with spheri-
cal curvilinear coordinates a special case. We are supporting the “tripolar”
grid of [ ], as discussed in Chapter 4. Other locally orthogonal
grids should be readily usable with the MOM4 framework. Because of this
added functionality to simulate the Arctic, MOM4 only minimally supports a
polar filtering scheme for tracers.

Bottom topography is represented using the [
partial cells. The older “full cell” approach is available via a namelist in the
topography generation pre-processing module.

For the inviscid dynamics, time stepping is with the leap-frog and Robert-
Asselin time filter. The Euler forward or Euler backward “mixing” time step
used in earlier MOMs has been eliminated. The dissipative dynamics (e.g.,
friction and diffusion) remains forward, as required for numerical stability.

As a forward model, MOM4 is compatible with the most recent adjoint com-
piler of Ralf Giering. To fully exploit this compiler for research requires a
license agreement from Giering. See

http:/ /www.fastopt.de/ralf/

for more details.

There are numerous diagnostics for checking code integrity, such as energetic
consistency, tracer conservation, solution stability, etc.

Through FMS, there are a full suite of pre-processing modules available for
setting up idealized or realistic grid specification files, initial conditions, and
boundary conditions.
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1.5.5 Physical aspects

Here we summarize some of the physical aspects of mom4.

e Physical units are MKS.

e MOM4 employs the non-Boussinesq approach of [

Hence, the kinematics, dynamics, and physics are based on a mass conserv-
ing framework, instead of the traditional volume conserving Boussinesq ap-
proach. Notably, the non-Boussinesq simulations yield a more accurate prog-
nostic calculation of the model’s sea level, including the steric effects absent
in the Boussinesq models. The volume conserving Boussinesq option remains
available for comparison via a namelist. [ ] presents details and
rationale. For realistic global simulations where a full physical parameteriza-
tion suite is used, the non-Boussinesq simulations have been found to be only
some 2% to 3% slower.

e The external mode solver is a variant of the [
explicit free surface. Top model grid cells have time dependent volume, thus
allowing for conservative fresh water input. [ ] presents full de-
tails and rationale. There is no rigid-lid option in MOMA4.

e Neutral tracer diffusion is implemented according to [
Likewise, Gent-McWilliams ([ ,
stirring is implemented using the skew-diffusion method of [ I
Flow dependent diffusivities are dependent on the depth integrated Eady
growth rate and Rossby radius of deformation, as motivated by the ideas of
[ Jand [
[ ] presents full details and rationale.

e Two equations of state are available. The most accurate is that described
by [ ]. In par-
ticular, the model’s density is a function of the local potential temperature,
salinity, and pressure. Pressure used for this calculation is the time depen-
dent hydrostatic pressure arising from fluid above the point of interest, in-
cluding the atmospheric pressure and pressure within the ocean free surface
(see [ 1), and surface
pressure is computed using the local surface ocean density, not the constant
Boussinesq density p,. The second equation of state is a linearized equation
for use in idealized Boussinesq models. Here, density is equated to potential
density and is a linear function of potential temperature. Nonlinear and pres-
sure effects are ignored in the linear equation of state. Chapter 21 details the
MOM4 implementation.

e Vertical mixing schemes include the time-independent depth profile of [
the Richardson number dependent scheme of [
and the KPP scheme of [ ].

e Horizontal friction schemes include constant and grid dependent viscosity
schemes, as well as the Smagorinsky viscosity scheme implemented accord-
ing to [ ]. Laplacian and biharmonic operators are
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available. The anisotropic scheme of [

and [ ] has been implemented for both the Lapla-
cian and biharmonic friction operators, as has the associated Laplacian viscos-
ity used in the [

paper. [ ] presents full details and rationale. Finally, the meth-
ods of [ ] allow for horizontal friction to be computed as a de-

viation from an approximate barotropic maximum entropy state (see Chapter
24).

Tracer advection is available using 2nd, 4th, 6th order centered schemes ([

and the quicker scheme documented by [

as well as [ . The algorithms for the 4th and
6th order schemes assume constant grid spacing, thus simplifying their code
though compromising their accuracy on grids with large anisotropies. MOM4
also provides for two multi-dimensional flux limited schemes ported from the
MIT GCM. These schemes are monotonic and quite efficient.

A sigma diffusion scheme is available, whereby tracers are diffused along
topography, with enhanced diffusion when heavy parcels are above lighter
parcels. This scheme aims to provide an extra diffusive pathway for dense
water to flow off shelves, as well as to add mixing next to the bottom. It

is implemented according to the ideas of | ] and
[ ]. Their sigma advection piece has not been
coded, largely due to the recommendations of [ ]

who concluded that the diffusive piece was sufficient for many purposes.
Chapter 15 describes the MOM4 implementation.

The overflow scheme of [ ] has been implemented
in MOM4. This scheme has similar, yet complementary, characteristics rela-
tive to the [ ] scheme. Chapter 16 describes the
MOM4 implementation of [ ].

Tidal forcing from eight lunar and solar constituents has been incorporated
into the free surface module of MOM4. Chapter 23 describes the implemen-
tation.

An open boundary condition (OBC) has been implemented into MOM4 to
allow the model to be of use for regional studies. Chapter 22 describes the
implementation.

1.6 Reproducing older results using MOM4.0

During the development of MOM4.0, there were significant efforts made to verify
that results generated with older versions of MOM were consistent with the new
code. Numerous bugs were found in such re-engineering exercises. Notably, how-
ever, one should not expect to regenerate exactly the same results due to (1) changes
in operation order, (2) resolving bugs present in older codes, (3) algorithm changes
resulting from increased understanding of the physics, dynamics, and numerics.
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Nonetheless, for most cases, the overall qualitative behaviour of the solution should
remain identical. Indeed, if such is not the case, then please carefully document the
differences and provide input to the developers.

1.7 Planned ocean model development

During the 3-testing phase of the MOM4 development (middle 2002 to late 2003),
many parts of the code have undergone testing whereby outstanding known and
unknown bugs/features have been resolved. As always, even after the 3-testing
phase, we solicit your critical input to help solidify the model’s integrity and func-
tionality. This section outlines plans for future development with mom4 and even
longer term plans for momb5.

1.7.1 General requirements for code to be incorporated to mom4

As stated in Section 1.5.1, we aim to maintain a balance between multiple options
and hard-line decisions about what is and is not supported. If there are notable
omissions or problems that the researcher identifies, then we solicit your input,
both in words and code, to expand the utility and integrity of the code.

Given this invitation for contributions, note that we aim to maintain a sound
sense of modularity whereby added code minimally interacts with other parts of
the code. Notably, any added code must first pass the tests posed by the various
MOM4 test cases described in Section 2.10. Finally, patience with your contribu-
tions is greatly appreciated, as the authors of this guide, who represent the core
MOM developers, are scientists also trying to use MOM4 to address fundamental
ocean climate questions.

1.7.2 Algorithm development at GFDL starting from mom4

Differences within models of the same vertical coordinate can be large, depend-
ing on details of numerics, physics, and forcing. The climate modeling community
needs to clarify these differences and to reduce modeling artefacts based on out-
dated assumptions and methods. Additionally, it is crucial that future model de-
velopment reduce computational barriers between different models, so that model-
ers can easily test different approaches and run different models. That is, it should
be trivial for anyone familiar with one model, regardless the vertical coordinate, to
run any other model.

Although difficult to predict with certainty, it is anticipated that long term MOM
development will focus on a generalized vertical coordinate model with a likely
move to the Arakawa C-grid. The trend towards generalized vertical coordinates,
though motivated theoretically, may be frought with unforeseen practical difficul-
ties tempering the theoretical arguments. Hence, it is necessary to garner the state-
of-the-art within each model framework to gauge progress with the more sophis-
ticated generalized models. This mandate motivates our development with the
z-coordinate MOM4.

Here, we identify some near-term development paths that are being investi-
gated at GFDL, starting from MOM4. They represent steps along the way towards
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more generalized time stepping and vertical coordinate capabilities. Much of this
development is inspired by work with the MITgcm.

e The leap-frog time stepping scheme has been the traditional approach for
time stepping the inviscid dynamics in MOM. Much of the code structure
assumes the leap-frog scheme, and such restricts ones ability to investigate
the utility of alternative approaches. The main problem with the leap-frog
scheme, at least for climate uses, is the inability to construct a discretely exact
conservation principle for tracers (e.g., [
and Chapter 7). This scheme can also exhibit substantial time-domain noise,
even when using the Robert-Asselin filter. Future development aims to re-
move the fundamental nature of the three-time level leap-frog scheme in MOM,
so to allow testing of alternative methods.

e MOM has always been discretized using a B-grid. With grid resolution in-
creasing, there are arguably some reasons for using the C-grid. In particular,
the C-grid provides far more flexibility in representing the complex topogra-
phy/geometry of an ocean basin since it allows for flow through single tracer
grid point channels. Work is planned to allow future GFDL models to use
either the B or C grids.

e MOM has always been a z-coordinate model. Recent advances based on the
isomorphism between depth and pressure suggest that minimal changes to
the dynamical kernal are needed to use sigma, eta, or pressure as the vertical
coordinate (e.g., [ ]and
[ ). Such work is planned for
future development.

1.7.3 Concerning a committment to model development

Ocean climate models are not conceived one year, to be then publicly released and
supported the next. Instead, they take years of creative passion, with a near infi-
nite amount of obsession to details, from numbers of people. Even to move from
MOM3 to MOM4, a move that did not involve fundamental numerical or physical
algorithm changes, took roughly four to five years of steady research and develop-
ment.

It is only through patience and persistence that an ocean model is successfully
taken from its initial vision phase, to its prototype phase, and then onto its public
release phase. Furthermore, public release in no way represents the final step. In-
deed, it is perhaps the most difficult step as it exposes the previously insular model
code to the critical eyes of multiple researchers with numerous needs and experi-
ences.

In short, the construction of an ocean model requires a marriage of research with
development, with each phase requiring an unpredictable amount of time to debate
and explore various avenues. Allowing such time requires dedication and support
from funding agencies and managers. In its absence, ocean model development is
handicapped and the integrity of the simulations compromised. NOAA and GFDL
have provided dedication and support for long-term research and development in
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the past. Continuance is necessary as we embark upon model development projects
into the 21st century thus taking us far beyond MOM4.
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The purpose of this chapter is to detail some computational aspects of MOM4.0.
It is meant to be a quick-start guide for those wishing minimal conceptual details
but instead wish to start running the model code as quickly as possible.

2.1 Derived types used in MOM4.0

As discussed in Section 1.5.3.2, MOM4.0 makes use of Fortran90 derived type struc-
tures. In particular, the code is organized around several derived types that com-
bine logically related fields. Top-level ocean interfaces accept the following derived

types:

e grid_type - grid locations, distances, metric terms and coriolis factors
e domain_type - local and global indices, mpp_domains flags and domain2d type.
e time_type - timestep counter, initial time, current time and time level indices.

e advective_velocity_type - horizontal and vertical advective velocities for tracers
and momentum.

e velocity_type - horizonal velocity and density weighted velocity for non-boussinesq

calculations.

e tracer_prog_type - tracer concentration, surface and bottom fluxes and tracer
metadata including name and units. These are tracers that evolve via the
tracer equation.

e tracer_diag_type - tracer concentration and tracer metadata including name and
units. These are tracers that are diagnosed and so possess only a single time
level.

o external_mode_type - quantities related to the external mode, including surface
height and height tendency and freesurface forcing.

e density_type - density quantities, including in-situ pressure and non-boussinesq
quantities.

e ocean_data_type - Surface quantities for communication with fms coupler.
e ice_ocean_boundary_type - surface flux quantities returned from the coupler.

Objects that are not contained in derived types include certain fields not associ-
ated with the ocean model as well as certain constants. Time independent objects
not contained in a derived type can be accessed by a module via the “use only”
statement. Time dependent objects are generally passed through subroutine inter-
faces. Maintaining this philosophy has reduced the head-aches associated with FO0
predessor cycles (i.e., self-referential loops).
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2.2 Code organization

We provide here the general flow of mom4.0 where we assume use of the gener-
alaized coupler to drive the model. When using this coupler, the ocean model is
run as one of any number of component models, even when the component mod-
els are null or dummy models. Using the coupler, even for simplified ocean-only
experiments, can be a useful way to familiarize oneself with how to run a coupled
model, and so it is recommended that one use the coupler when feasible. However,
for those cases with idealized boundary conditions, it may be desirable to focus
just on the ocean relevant issues. For this case, the driver ocean_solo.F90 can be
used instead. This module is quite similar to the coupler, but omits some of the
unnecessary calls. Use of ocean_solo.F90 may also be warranted when one has an
alternative coupler to use, such as one arising from the European PRISM effort.

Note that the following list of steps may be a bit out of date due to the introduc-
tion of some added physics modules subsequent to the writing of this document.
Regardless, the general ideas are relevant and should give the reader an overall
sense for the code flow.

Coupler_main (driver)

+initialize fms infrastructure

+initialize component models (atmos/ice/land/ocean)
+initialize flux exchange grid
+begin coupled loop

+
+
+

+

calculate flux from ocean to ice

udpate ice surface for atmospheric fast physics
time-step atmos/ice/land on ‘‘fast’’ physics timestep
and perform boundary layer computations

update
calculate flux between ice/ocean
timestep ocean (update_ocean_model)

‘‘slow’’ ice and land processes (dynamics, transport, mass)

++derive flux quantities for ocean (ocean_sfc_mod:get_ocean_fluxes)

++calculate restoring fluxes or adjustments (ocean_sbc_mod:flux_adjust)

++calculate bottom boundary fluxes
(ocean_bbc_mod:get_ocean_bbc)

++calculate ocean density quantities
(ocean_density_mod:update_ocean_density)

++calculate ocean advection fields
(ocean_advection_velocity_mod:ocean_advection_velocity)

++calculate surface height tendency
(ocean_freesurf_mod:surface_height_tendency)

++calculate vertical mixing coefficients
(ocean_vert_mix_coeff_mod:vertical_mix_coeff)

++calculate thickness weighted tracer source from neutral physics
(ocean_neutral_physics_mod:neutral_physics)
add update vertical diffusion coefficient

++calculate thickness weighted temperature tendency from shortwave
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(ocean_shortwave_pen_mod:sw_source)
++calculate tracer tendency due to sponges
(ocean_sponge_mod:sponge_tracer_source)
++calculate thickness weighted tracer tendency from cross-land mixing
(ocean_xlandmix_mod:xlandmix)
++calculate thickness weighted tracer tendency due to river discharge
(ocean_rivermix_mod:rivermix)
++calculate thickness weighted tracer tendency due to sigma diffusion
(ocean_sigma_diffuse_mod:sigma_diffusion)
++update tracer(ocean_tracer_mod:update_ocean_tracer)
++calculate polarfiltered version of tracers
(polar_filter_tracers_mod:polar_filter_tracers)
++calculate anomalous density using updated tracer
(ocean_density_mod:calc_rho_tilde)
++calculate density-weighted velocity
(for non-boussinesq - ocean_velocity_mod:calc_u_rho)
++calculate acceleration terms handled explicitly in time
(ocean_velocity_mod:ocean_explicit_accel)
++calculate acceleration of top layer due to freesurface
effects(ocean_freesurf_mod:ocean_freesurf_drag)
++calculate frictional terms handled implicitly in time
(ocean_velocity_mod:ocean_implicit_accel)
++calculate forcing for freesurface based on baroclinic field
(ocean_freesurf_mod:ocean_freesurf_forcing)
++calculate acceleration terms handled explicitly in time
(ocean_velocity_mod:ocean_explicit_accel)
++calculate Coriolis term handled implicitly in time
(ocean_velocity_mod:ocean_implicit_coriolis)
++update freesurface (replace vertical mean -
ocean_freesurf_mod:update_ocean_freesurf)
++update velocity
(ocean_velocity_mod:update_ocean_velocity)
++compute energetic diagnostics
(ocean_velocity_mod:energy_analysis)
++compute remaining ocean diagnostics
(ocean_diagnostics_mod:ocean_diagnostics)
++apply robert time filter
++update top-level thickness
++fill boundaries
++perform data assimilation
++return ocean surface properties to coupler
(ocean_sfc_mod:get_ocean_sfc)
+end coupled loop
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2.3 How boundary conditions are handled

A major difference in MOM4 compared with previous releases is the availability
of a coupler for exchanging fluxes with other component models. Atmosphere, ice
and land component models developed at GFDL with interfaces to the coupler are
made available publicly. Within the coupling framework, all fluxes to the ocean are
routed through the ice component model. The fluxes are made available to mom4.0
via the derived type ice_ocean_boundary_type. The boundary field components are as
follows:

Ice_ocean_boundary’sw_flux : Net downward shortwave flux (Watts/m~2)
Ice_ocean_boundary’lw_flux : Net downward longwave flux (Watts/m~2)

Ice_ocean_boundarylfprec : frozen precipitation (kg/m"~2/sec)
Ice_ocean_boundary’lprec : liquid precipitation (kg/m~2/sec)
Ice_ocean_boundaryjcalving : frozen runoff to ocean (kg/m~2/sec)
Ice_ocean_boundary’t_flux : upward sensible heat flux (Watts/m~2)

Ice_ocean_boundary’q_flux : upward specific humidity flux (kg/m~2/sec)
Ice_ocean_bounrary’salt_flux : upward salt flux( kg/m~2/sec)

Ice_ocean_boundary’runoff : liquid runoff to ocean (kg/m~2/sec)
Ice_ocean_boundaryju_flux : zonal momentum flux to ocean (N/m~2)
Ice_ocean_boundary’%v_flux : meridional momentum flux to ocean (N/m"2)
Ice_ocean_boundary’,p : pressure of overlying ice and atmosphere (N/m"2)

In order to use the coupler (coupler/coupler_main.f90), boundaries of the ocean-
atmosphere-ice-land grid cells must be supplied. This information is used to define
an “exchange grid” for conservative exchange of fluxes. The exchange grid rep-
resents the union of the component model grids. Exchange grid information is
calculated prior to running the model. This step involves executing the make_xgrids
command.

At runtime, the atmosphere, ice, land, and/or ocean component models can
be disabled through namelist flags coupler_nml: do_atmos, do_ice, do_land, do_ocean.
The component boundary fields keep their initial values, or may be overridden
with data from a specified NetCDF file. This information is provided through the
data_override_table. For instance, the windstress to the ocean (from the ice model) can
be overridden with data from a climatological file with the following table entry:

"OCN", "u_flux", "taux" , "INPUT/ssmi_tau.nc",-1,-1,-1.e10,.false.,1
"OCN", "v_flux", "tauy" , "INPUT/ssmi_tau.nc",-1,-1,-1.e10,.false.,1

‘‘OCN’’ - identifies the target component model

“‘u_flux’’ - corresponds to the name of the boundary field

‘‘taux’’ - is the name of the field as it exists in the NetCDF data file
¢ “INPUT/ssmi_tau.nc’’ - is the name of the file containing the winds
¢¢-1’’ - not used

‘-1’ - not used

‘‘-1.e10’’ - constant value (-1.e10 is a flag to use the data from the file)
¢¢.false.’’ - data is on the target grid (true) or off-grid(false)
€1.0°’ - scale factor
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Alternatively, the ocean model can be run in stand-alone mode using the stand-
alone driver (mom4/drivers/ocean_solo.F90). Boundary fields are inserted into
the ice_ocean_boundary field using data_override table entries in an identical fash-
ion to the coupled model. The stand-alone option does not require execution of
make_xgrids and is appropriate for limited domain ocean configurations or more
idealized experiments.

2.4 Grid and topography generation

The grid_spec.nc file is fundamental to the running of a model within FMS. This file
contains information about the horizontal and vertical grid spacings in the model
as well as the land /sea mask. We require this file to subsequently create initial and
boundary conditions for the ocean model experiment. When running a coupled
model, grid_spec.nc also contains information about the exchange grid (as garnered
by running make_xgrids subsequent to generating the grid for the ocean-alone).

There are various options available for generating the ocean grid specification
file. For example, a global grid can be spherical or tripolar, and there are options
available for changing the resolution within regions such as the tropics. The to-
pography mask can be generated from an idealized function, or re-mapped from
another topography file such as from a dataset. All of these options, and more, are
spelled out in the preprocessing directory

src/preprocessing/generate_grids/ocean

The development of a topography file to be used in a particular ocean model
experiment generally requires a great deal of effort. The reason is that it is difficult
to provide an objective specification of the topography on an ocean model grid
which includes all the essential details about straights and throughflows. The case
of Panama is a good example, where an objective specification of a global 4-degree
grid often results in a disconnected North and South America, which clearly is
unacceptable for a realistic simulation of modern ocean circulation. Hence, some
manner of tuning is inevitable.

Topography tuning is as much an art as there comes in ocean modeling, and
it typically requires lots of experience and testing. The sensitivity of the solution
to topography details is also quite dependent on model subgrid-scale parameters,
such as viscosity. One tool that was developed at GFDL for use in organizing hand-
edits to the topography file is the edit_grid module contained in

src/preprocessing/generate_grids/ocean

An ASCII file containing index, depth pairs is prepared. edit_grid makes the
necessary modifications and outputs to a separate grid specification file. Again,
refer to the script and code for this module to garner full details for the usage.

edit_grid ASCII file format

i_index[:i_index2], j_index[:j_index2], depth
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2.5 Initial conditions and boundary conditions

Initial condition fields can be created in two manners. First, there are various ide-
alized initial conditions (e.g., global constant, zonal averaged Levitus) which can
be created for a particular grid specification file. Second, there are more realistic
initial conditions which are obtained by regridding an analyzed product, such as
that from [ ], onto the model grid. The first capability is provided by
files in

src/preprocessing/mom4_prep/idealized_ic
The regridding capability is provided by code in
src/preprocessing/regrid_3d

Notably, the regrid option can take a dataset that is originally gridded on a spherical
grid and regrid it to either a spherical ocean model grid, or to a tripolar ocean model
grid. Either form of the regridding uses a nearest neighbor approach.

As with initial conditions, it is necessary to setup boundary conditions on the
particular model grid (defined by the grid_spec.nc file) used to run the experiment.
Boundary conditions can be either idealized, with code available in

src/preprocessing/mom4_prep/idealized_ic
or taken from some dataset and regridded to the model grid, as done using files in
src/preprocessing/regrid_2d

The scripts and code are very similar to those used for the initial conditions, and
detailed documentation is provided in the code and scripts.

Note that when running a model using realistic boundary forcing, it is not nec-
essary to perform the regrid_2d step. An alternative is to leave the dataset on its
native grid and perform the regrid each time step of the model run. This is the
procedure for running a coupled model when the atmospheric grid differs from
the ocean. When the data has been regridded prior to running the ocean model, as
may be appropriate for an ocean-only run, then the “ongrid” flag can be set .true. in
the data_override_table, when running with the FMS coupler. Otherwise, the data
can reside on an arbitrary spherical grid which covers the ocean domain, in which
case “ongrid” is set false in the data_override_table.

Interior tracer restoring (or sponges) are generated exactly the same way as ini-
tial conditions, using regrid_3d.pl. An additional NetCDF file containing the damp-
ing timescale for the tracers should be generated as well. This can be accomplished
with an analysis package such as Ferret.

NOTE: missing values (such as land points) should be removed from the datasets before
using the regrid_2d and regrid_3d codes, or data_override. Ferret provides tools for removing
missing values.
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2.6 Managing multiple tracers

The purpose of this section is to describe the way that MOM4 handles tracers. The
capabilities are quite extensive, and have evolved over many years of experience
with biogeochemical simulations in earlier versions of MOM. In particular, there are
numerous means for quality control, whereby errors checks are aimed at assisting
the user when setting up the model for tracer studies.

This section was contributed by Richad.Slater@noaa.gov.

2.6.1 Definitions

This section introduces some definitions to be referred to in the following discus-
sions.

2.6.1.1 Prognostic tracers

Prognostic tracers are those tracers transported in the model via processes such as
advection and diffusion. Prognostic tracers are read in and written out to restart
files at the beginning and end of runs, respectively. There are several fields associ-
ated with each prognostic tracer. Examples are: long name, units, input file, output
file, advection schemes, minimum and maximum values.

2.6.1.2 Diagnostic tracers

Diagnostic tracers are not transported in the model. Instead, they are calculated, or
diagnosed, from local fields. Examples are frazil, in the core code, or chlorophyll
in the ocean prognostic biology package. Diagnostic tracers may be read in and
written out to restart files, but not all diagnostic tracers would do this. Diagnostic
tracers also have several fields associated with them, like the prognostic tracers.

2.6.1.3 Tracer package

A tracer package is a group of related prognostic tracers, which either have inter-
dependencies (such as the components of an ecosystem model), or are logically
related (such as CFC-11 and CFC-12). A tracer package will likely add extra tracers
in some increment greater than one (for instance, the ocmip2_biotic package adds
the following tracers: PO4, DOP (dissolved organic phosphorus), ALK (alkalinity),
O,, and DIC (dissolved inorganic carbon)). Tracer package names must be unique.

A tracer package may also have diagnostic tracers associated with it. It may also
add extra fields to the restart files, as may be necessary to ensure model answers
remain independent of whether a restart has been written or not (i.e., restart repro-
ducibility). The default package required is set for Temperature and Salinity since
these two tracers are always integrated in MOM4.

2.6.1.4 Tracer package instances

A tracer package may have a number of instances. An instance is an increment of
tracers for a given tracer package. Examples are: multiple age tracers (one global,
one northern hemisphere and one southern hemisphere), or a control run for an
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ecosystem model and a nutrient depletion run. Multiple instances save on cod-
ing by reusing code, and save on computation by using a single integration of the
physical model.

Each instance in a tracer package must have a unique name for that package.
The instance name will be appended to each variable name with an underscore
in-between. For example, for an age tracer with a name of global, the resultant
name will be age_global. This is the name that should be used in places such as
the diag table, and it is the name used in restart files. If the instance name consists
of a single underscore (_), then nothing will be appended to the variable names.

If a tracer package contains any variables which are not passive, then that pack-
age may only have one instance.

2.6.1.5 The Tracer Tree

The Tracer Tree is a linked list of fields which contain the state of the definitions of
the tracer packages, prognostic and diagnostic tracers, and some “namelist” infor-
mation for the different tracer packages.

The tracer tree consists of lists and fields. One may think of the tracer tree as a
Unix file system, where lists are like directories and fields are files. A field may con-
tain an array of one of the following types: integer, logical, real or string [character
(len = fm_string len)].

The tracer tree is controlled, internally, via the FMS file field manager.F90
module located in the shared/field manager directory. Externally, it is controlled
via the Field Table.

2.6.1.6 Ocean Tracer Package Manager

The Ocean Tracer Package Manager (TPM) consists of a module ocean_tpm.F90
located in the MOM4 directory ocean_tracers. This file houses the subroutine
calls to perform the various tasks needed to run a tracer package. There are seven
subroutines that do initialization, start of run functions (eg., read extra restart fields
or read namelists), update source terms, do end of iteration calculations, set surface
boundary conditions, set bottom boundary conditions, and end of run functions
(eg., write extra restart information). Whenever tracer packages are added to the
model, ocean_tpm.F90 needs to be changed.

There is one other module which provides support for the ocean TPM. This is
the module ocean_tpm util.F90 located in the MOM4 directory ocean_core. This
module contains pointers to things like the grid and domain variables, as well as
routines to set up tracer packages and prognostic and diagnostic tracers.

2.6.1.7 Field Manager

The field manager resides in field manager.F90 in shared/field manager and
contains routines to manipulate and query the tracer tree. Manipulation may be
done either through subroutine and function calls, or through the reading and pars-
ing of text files.

The field manager also contains routines which handle the Field Table, which
is also used by the atmospheric tracer manager and some other functions, such as
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the cross-land mixing.

2.6.1.8 T_prog and T_diag arrays

After the tracer trees are processed, the relevant information is passed into the
T_prog and T_diag arrays. These are arrays of types prog_tracer_type and diag_tracer_type,
respectively. These types are defined in ocean_types.F90 in the MOM4 directory
ocean_core.

These arrays hold such things as the 3-d values for the tracer field, name, long
name, units, surface tracer flux, bottom tracer flux, etc.

2.6.2 Using tracer packages
This section provides an overview of the steps which the program will take in de-
termining whether a tracer package is to be used, and then what it does to use it.

2.6.2.1 Introduction

To use a particular tracer package, several things need to be done:

1. A module must be created that defines the desired tracers, their sources,
boundary conditions, etc., and this routine placed in the MOM4 directory
ocean_tracers,

2. ocean_tpm mod must be modified to use the module and to call the appropri-
ate init, start, etc. routines,

3. the model must be (re-)compiled,

4. the run script must turn on the desired tracer package(s) via the Field Table,
provide initial and boundary condition files (if needed), select the desired
diagnostics via the Diag Table, and set and “namelist” and control values
(i.e., advection schemes, long name, units) via the Field Table.

The foloowing sections describe the steps that the model takes to run the basic
tracers potential temperature and salinity, as well as an age tracer.

2.6.2.2 Field Table processed

The first thing that is done in the model pertaining to ocean tracers is that the Field
Table is read and processed. A sample field table file is given below for the case
when we are initializing the tracer.

#
# Potential temp and salinity
#

"tracer_packages" "ocean_mod" "required"
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horizontal-advection-scheme = mdfl_sweby
vertical-advection-scheme = mdfl_sweby
file_out=RESTART/ocean_temp_salt.res.nc
/

"prog_tracers","ocean_mod","temp"
file_in = INPUT/INPUT/woa0l_temp_annual_omlp5.nc
init=t

/

"prog_tracers","ocean_mod","salt"
file_in = INPUT/INPUT/woaOl_salt_annual_omlp5.nc
init=t

/

#
# Age tracers
#

"tracer_packages","ocean_mod","ocean_age_tracer"

names = global, nh
horizontal-advection-scheme = mdfl_sweby
vertical-advection-scheme = mdfl_sweby
file_in = INPUT/ocean_age.res.nc
file_out = RESTART/ocean_age.res.nc
min_tracer_1imit=0.0

/

"prog_tracers","ocean_mod","age_global"
init=t

const_init_tracer = t

const_init_value = 0.0

/

"prog_tracers","ocean_mod","age_nh"
init=t

const_init_tracer =t
const_init_value = 0.0

/
"namelists","ocean_mod","ocean_age_tracer/global"
slat = -90.0

nlat = 90.0

wlon = 0.0

elon = 360.0

/
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"namelists","ocean_mod","ocean_age_tracer/nh"

slat = 0.0
nlat = 90.0
wlon = 0.0
elon = 360.0
/

Note that the field table file is divided into blocks. Each block starts with a line
containing three quoted strings, and ends with a line with a slash. The unquoted
slash will end the block wherever it occurs. For clarity, it is good practice to put the
slash on its own line. Comments start with a # in the first column, and blank lines
are ignored.

The second string at the start of the block is the model name. For the ocean
model, it should always be ocean_mod when using the field table. The first string
should be one of the following;:

tracer_package This string will turn on a tracer package and set default values
that will apply to all tracers in the package.

prog_tracers This string will set values for individual, prognostic tracers.
diag_tracers This string will set values for diagnostic tracers.

namelists There are some instances where FORTAN namelists are not appropri-
ate (dynamically allocated arrays, multiple namelists with the same name in
the same file). The tracer tree provides a mechanism to overcome these limi-
tations.

The third string is the name of the element which we want to modify. The other
lines are basically just assignments, where, if the field being assigned is an ar-
ray, one may give a comma-separated list of values (see the names variable in the
ocean_age_tracer tracer_packages block.

The table above will create a tracer tree of the following form:

/ocean_mod/
tracer_packages/
required/
file_out=’RESTART/ocean_temp_salt.res.nc’
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme=’"mdfl_sweby’
ocean_age_tracer/
names[1]=global
names [2] =nh
min_tracer=0.0
file_out="RESTART/ocean_age.res.nc’
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme="mdfl_sweby’
prog_tracers/
temp/
init=T



2.6. MANAGING MULTIPLE TRACERS 41

file_in=’INPUT/woa0l_temp_annual_omlp5.nc’
salt/
init=T
file_in=’INPUT/woa0l_salt_annual_omlp5.nc’
age_global/
init=T
const_init_tracer=T
const_init_value=0.E+0
age_nh/
init=t
const_init_tracer=T
const_init_value=0.E+0
namelists/
ocean_age_tracer/
global/
slat=-90.
nlat=90.
wlon=0.E+0
elon=360.
nh/
slat=0.E+0
nlat=90.
wlon=0.E+0
elon=360.

where the lists end in slashes and fields are assignments.

2.6.2.3 Prognostic tracer initialization

The initialization of a tracer package is done in ocean_prog_tracer_init, which is
containted in ocean_tracer.F90. Two subroutines are provided in ocean_tpm_util_mod
to make this easier. They are otpm_set_tracer_package, to set a tracer package, and
otpm_set_prog_tracer, to set a prognostic tracer. The otpm_set_tracer_package
will set a tracer package, and optionally define new values for the fields of all of
the prognostic variables in that tracer package. These values are merged with those
defined by the Field Table. In our exampple above, this will give us a dump of
the tracer_packages part of the Tracer Tree as:

tracer_packages/

required/
names=NULL
units=’ "’
conversion=1.
offset=0.E+0
min_tracer=-1.E+20
max_tracer=1.E+20
min_range=1.
max_range=0.E+0
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ocean_age_tracer/
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use_only_advection=F
file_in=’INPUT/ocean_tracer.res’

init=F

name_in=’ ’

scale_in=1.

additive_in=0.E+0

const_init_tracer=F
const_init_value=0.E+0
file_out="RESTART/ocean_temp_salt.res.nc’
flux_units=’ ’

min_flux_range=1.

max_flux_range=0.E+0
min_tracer_limit=-1.E+20
max_tracer_limit=1.E+20
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme="mdfl_sweby’

names [1]=global

names [2] =nh

units=’yr’

conversion=1.

offset=0.E+0

min_tracer=0.0

max_tracer=1.E+20

min_range=1.

max_range=0.E+0
use_only_advection=F
file_in=’INPUT/ocean_age.res’
init=F

name_in=’ "’

scale_in=1.

additive_in=0.E+0
const_init_tracer=F
const_init_value=0.E+0
file_out="RESTART/ocean_age.res.nc’
flux_units=’m’

min_flux_range=1.
max_flux_range=0.E+0
min_tracer_limit=-1.E+20
max_tracer_limit=1.E+20
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme="mdfl\_sweby’

The default tracer package, required, is initialized in ocean_prog tracer_init,
whereas all other packages are initialized in calls from ocean_tpm_init.

After the call to otpm_set_tracer_package, the names fields are checked for each

tracer package. If any of them are NULL (have no value assigned) then that tracer
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package will not be used in the run and a flag will be set to indicate that. If there
are values set (as in the ocean_age_tracer above), then the tracer package will be
marked as being used, and an instance of the tracer package will be created for
each value in the names array. Therefore, in out above example we’ll create two
instances of the age tracer, one named age_global and one named age_nh. Note
that the required package is a special case, Even though its names is NULL, the
package is still used. After all, it is required.

Next, for each instance of the tracer package, each variable will be initialized
via a call to otpm_set_prog_tracer. Again, optional values for the fields of the
prognostic tracer may be set in the call. This routine will merge the values from the
tracer_packages tree for this package with any values that were set via the Field
Table, and it own arguments and defaults. The precedence is Field Table, local
arguments, tracer_packages tree. A dump of the prog_tracers tree is as follows:

prog_tracers/
temp/

longname=’Potential”temperature’
units=’deg_C’
conversion=4128868.526280635
offset=273.14999999999998
min_tracer=-5.
max_tracer=55.
min_range=-10.
max_range=100.
use_only_advection=F
file_in=’INPUT/woa0l_temp_annual_omlp5.nc’
init=T
name_in=’temp’
scale_in=1.
additive_in=0.E+0
const_init_tracer=F
const_init_value=0.E+0
file_out="RESTART/ocean_temp_salt.res.nc’
flux_units=’Watts’
min_flux_range=-10000000000000000.
max_flux_range=10000000000000000.
min_tracer_limit=-2.
max_tracer_limit=32.
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme=’"mdfl_sweby’

salt/
longname=’Salinity’
units=’psu’
conversion=1.0349999999999999
offset=0.E+0
min_tracer=-1.
max_tracer=55.
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min_range=-10.

max_range=100.

use_only_advection=F
file_in=’INPUT/woa0l_salt_annual.nc’
init=T

name_in=’salt’

scale_in=1.

additive_in=0.E+0

const_init_tracer=F
const_init_value=0.E+0
file_out="RESTART/ocean_temp_salt.res.nc’
flux_units=’kg/sec’
min_flux_range=-100000.
max_flux_range=100000.
min_tracer_limit=5.

max_tracer_limit=42.
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme="mdfl_sweby’

age_global/
longname=’Age~global’
units=’yr’
conversion=1.
offset=0.E+0
min_tracer=0.E+0
max_tracer=1.E+20
min_range=1.
max_range=0.E+0
use_only_advection=F
file_in=’INPUT/ocean_age.res.nc’
init=T
name_in=’age_global’
scale_in=1.
additive_in=0.E+0
const_init_tracer=T
const_init_value=0.E+0
file_out=’RESTART/ocean_age.res.nc’
flux_units=’m’
min_flux_range=1.
max_flux_range=0.E+0
min_tracer_limit=0.E+0
max_tracer_limit=1.E+20
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme="mdfl_sweby’

age_nh/
longname=’Age™nh’
units=’yr’
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conversion=1.

offset=0.E+0

min_tracer=0.E+0

max_tracer=1.E+20

min_range=1.

max_range=0.E+0
use_only_advection=F
file_in=’INPUT/ocean_age.res.nc’
init=T

name_in=’age_nh’

scale_in=1.

additive_in=0.E+0
const_init_tracer=T
const_init_value=0.E+0
file_out="RESTART/ocean_age.res.nc’
flux_units=’m’

min_flux_range=1.
max_flux_range=0.E+0
min_tracer_limit=0.E+0
max_tracer_limit=1.E+20
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme="mdfl_sweby’

After the file is processed, ocean_prog_tracer_init will determine the number of
prognostic tracers and allocate the T_prog array and will loop over the variables in
the tracer tree and assign values into the T_prog array. Restart, or initial condition,
files are read and some variables are set up for processing by the diag manager.

2.6.2.4 Diagnostic tracer set up

The set up for diagnostic tracers is similar to that used for prognostic tracers. Diag-
nostic tracers are set up in ocean_diag_tracer_init for base MOM4 tracers, and in
the appropriate tracer_package _set_up routine, for those associated with a given
tracer package. The T_diag array is allocated and filled in the ocean_diag_tracer_init
routine.

Diagnostic tracers are not turned on or off explicitly like prognostic tracers.
Instead, the appropriate tracer packages are coded to set up diagnostic tracers as
needed, and the user only needs to possibly modify such things as the restart file
names or initial conditions. Diagnostic tracers may also be defined in the base
MOM4 code (such as frazil), and these, too, are defined because of the selected
features/schemes which have been compiled into the model.

2.6.2.5 Namelist tree set up

The tracer packages could use regular Fortran90 namelists to set parameter values.
However, there are some problems with this relating to the number of instances.

If we have multiple instances of a tracer package, say three age tracers, we need
a way to set the parameters for each instance. One possible way to do this is to
make each parameter a dynamically allocated array—of dimension 3, in this case.
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Unfortunately, Fortran90 does not allow allocatable arrays in namelists. Another
alternative is to use multiple namelists in the input, where the namelist includes
the instance name. This works on some platforms, but the Fortran90 specification
does not say what should be done in the situation of more than one namelist with
the same name in a single file. Therefore, this solution may not be portable. Finally,
one could put the the namelists in separate files, but then the program would need
to be told which files to look in, and this quickly gets complicated.

A solution is to use the field manager in a manner similar to the tracer trees
to handle namelists. A separate tree is set up at /ocean mod/namelists and each
tracer package can set up a list off of that. These are typically set up in the appropri-
ate tracer_package _start routine and processed in tracer_package _start. Rou-
tines to aid in the namelist set up are otpm_start_namelist and otpm_end namelist
in the ocean_tpm_ util mod module. As is the case with the other initialization rou-
tines, the values from the Field Table will be merged with those defaults set in the
subroutines. The namelists tree that results from the ocean_age _tracer mod and the
Field Table above is:

namelists/
ocean_age_tracer/
global/
coastal_only=F
t_mask[1]=T
t_mask[2]=T
t_mask[3]=T
t_mask[4]=T
t_mask[5]=T
t_mask[6]=T
t_mask([7]=T
t_mask[8]=T
t_mask[9]=T
t_mask[10]=T
t_mask([11]=T
t_mask[12]=T
age_tracer_type=’not used’
wlon=0.E+0
elon=360.
slat=-90.
nlat=90.

nh/
coastal_only=F
t_mask[1]=T
t_mask[2]=T
t_mask[3]=T
t_mask([4]=T
t_mask[5]=T
t_mask[6]=T
t_mask([7]=T
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t_mask[8]=T

t_mask[9]=T

t_mask[10]=T

t_mask[11]=T

t_mask[12]=T
age_tracer_type=’not used’
wlon=0.E+0

elon=360.

slat=0.E+0

nlat=90.

2.6.2.6 Error checking

When you look at the code, you will find much effort has gone into checking for
errors in the entries of the Field Table. Hopefully this code will help catch, at start
up, many typos which sometimes find their way into our input files. Things that
can be caught are typing wlonn instead of wlon. If this happens, an error message
is printed, the extra field name is printed and the model will abort. This is similar
to what would happen in a traditional FORTRAN90 namelist. Two classes of er-
rors cannot be caught: when what one mistypes is a valid name in itself (like wlon
instead of the desired elon), and entries in another component model (like typing
atmos_mod instead of ocean_mod).

2.6.3 Coding new tracer packages

Until more documentation is written, and even thereafter, the best place to see how
to write your own MOM4 tracer packages is to look at the example code in the
ocean_tracers directory. There are presently a handful of packages supported for
use in MOM4.0. Future contributions to MOM4 tracer capabilities should emulate
the approaches used in these tracer packages.

2.7 Static memory for optimizing on SGI machines

Fundamental to the FMS design philosophy is the desire to maximize flexibility of
code. This approach has its benefits in allowing for minimal spin-up time for users
to use FMS tools for productive research. Consistent with this philosophy is the
use of dynamic memory allocation as the default in mom4.0 and other FMS com-
ponent models. Dynamic memory allocation means that the model does not know
the size of the arrays until specified at runtime via the input of the grid-spec file
and the tables setting the number of tracers. Hence, with the same executable, the
user can change the processor domain decomposition, model grid, and number of
tracers. This flexibility has been found to be quite useful for development purposes,
adding tracers at an intermediate point in an experiment, and running ensembles
of experiments.

Experience at other research institutions have indicated that dynamic memory
allocation can come with the price of relatively poor performance. Experience at
GFDL with SGI Origin machines are consistent with this experience. However,
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it is not fully clear where the problem lives. Preliminary suggestions point to a
feature that slows down code employing array syntax, especially array syntax in-
volving derived type fields. However, tests moving from mom4-beta2 to mom4.0
are ambiguous, since mom4-beta2 did not use derived types whereas mom4.0 uses
them extensively, and no significant efficiency difference was noted between the
two codes. Whether it is a compiler bug or not, SGI is presently investigating this
issue which will hopefully be resolved in the near-future. Furthermore, it is not
known whether other machines share this bug.

In the meantime, mom4.0 is provided with a static memory allocation option
implemented via the cpp-preprocessor compiler option STATIC_MEMORY . Static
allocations mean that the memory requirements for the model are specified at com-
pile time. Tests with mom4.0 on the GFDL SGI Origin machines result in an ap-
proximately 2x performance enhancement. Use of the STATIC_.MEMORY cpp-
preprocessor option in mom4.0 requires the model domain decomposition and model
grid size to be specified at compile time. Furthermore, the resulting processor
domain decomposed grid must have an identical number of computational grid
points for each processor domain. This constraint restricts ones ability to arbitrar-
ily decompose the grid across processors. It is important to keep this point in mind
when developing the grid for an experiment. For example, use of a prime number
of grid points severely limits the domain decomposition possibilities available for
the experiment.

Although grid information at compile time is needed, we do not need to specify
the number of prognostic and diagnostic tracers at compile time. This is due to the
treatment of tracers through the FMS field_manager, where tracer information is
read in via tables.

An example of a compiler option for a model with 180 points in the i-direction,
174 points in the j-direction, 50 vertical levels, and running on 6 X 6 processors is
the following:

set cppDefs = ( "-Duse_netCDF -Duse_1ibMPI -DSTATIC_MEMORY -DNI_=180
-DNJ_=174 -DNK_=50 -DNI_LOCAL_=30 -DNJ_LOCAL_=29" )

2.8 SHMEM versus MPI

MOM4 can be compiled and run using either MPI or SHMEM. For an MPI compi-
lation, we add

-Duse_1ibMPI
the cppDefs as shown above. For SHMEM, we have

set cppDefs = ( "-Duse_netCDF -Duse_libSMA -DSTATIC_MEMORY -DNI_=180
-DNJ_=174 -DNK_=50 -DNI_LOCAL_=30 -DNJ_LOCAL_=29" )

On the SGI Origin at GFDL, SHMEM is more efficient than MPI. When running
MOM4, the answers obtained with MPI agree at the bit-level to those obtained with
SHMEM.
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2.9 MOM4 printout

MOM4.0 generates ascii output that is sent to the Fortran units stdout and stdlog.
stdlog contains information about the module version being employed as well as
the namelist settings for the module. This information is crucial for those wishing
to reproduce experimental results at later dates, where code or parameter settings
may have been changed in the interim. All FMS modules write this information to
stdlog.

For the ocean model, namelist information is also written to stdout. In addition,
stdout contains various quality control statements highlighting what the model is
using, as well as warnings to indicate possible conflicts. MOM4.0 has a wide array
of options, and it is important that such verbosity be employed to communicate
to the user what the model is doing. Correspondingly, it is strongly encouraged
that the user frequently read printout files to ensure that the model is running in a
physically relevant manner. If users have suggestions for clearer or more complete
output statements, please provide such to the MOM4.0 developers.

2.10 Test cases

MOM4 is distributed with test cases. The test cases serve many purposes for both
the developers and researchers using the code. Details of the test cases can be found
in the runscripts and README files distributed with the code. The first test case
is a flat bottom sector model with solid walls. Similar models have been used for
idealized studies of thermohaline circulation variability. The second test case is a
global model whose grid is based on spherical coordinates. The third test case is a
global model whose grid is based on the [ ] tripolar grid described in
Chapter 4. No polar filter is used for this test case since the polar singularity has
been removed from the ocean. The fourth test case couples the ocean to the GFDL
Sea Ice Simulator (SIS) model. The fifth test case is a channel model that tests the
open boundary condition.

2.10.1 Purposes of the test cases

Importantly, MOM4 test cases are not sanctioned for physical integrity. Let us be
clear on this statement:

MOM4 TESTS ARE NOT SANCTIONED
FOR THEIR PHYSICAL INTEGRITY!

Instead, tests are distributed for the following reasons:
e To illustrate how to set up and run an experiment.

o To verify that the model solution is independent of the number of processors
and whether a restart occurred or not.
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e To computationally exercise certain parts of the code, such as domain topolo-
gies, physical parameterizations, and numerical methods. That is, to pro-
vide the researcher with a sense for the baseline numerical/computational
behaviour of the code.

e Those wishing to contribute new code to the main branch of mom4 should
document how the test cases are affected. If appropriate, a new test case
should be constructed exercising the new algorithm.

There has been minimal tuning involved in the construction of test cases. Hence,
the researcher should not consider a test case as an “off the shelf model configura-
tion” appropriate for conducting relevant and publishable research. Indeed, there is
no guarantee that the test cases will run for an indefinite period of time. Providing
full support for “off the shelf” configurations is, unfortunately, beyond the abili-
ties of the MOM team. Given these caveats, the test cases nonetheless can provide
a useful starting point for the researcher who wishes to build models addressing
particular research questions.

2.10.2 Namelists

A particular experiment is defined by its grid, forcing, physics, and dynamics.
Much of the experimental details are specified by namelist settings. Namelists al-
low one to modify many of the experiment details while using the same executable,
and so not requiring a new compilation. This approach, introduced in MOM1,
greatly enhances the model flexibility and usability.

A complete listing of the namelist parameters available for a module can be
found via the associated html documentation provided with each module. Reading
the fortran source code is also, clearly, a way to understand what is available.

2.11 Reproducibility across processors and restarts

Simulations conducted on multiple processors should not be a function of the num-
ber of processors. In addition, answers should not depend on whether the model is
run with static or dyanamic memory allocation. To verify that answers are identi-
cal requires one to simply run the model on various numbers of processor elements
(PEs), and the results must be bit-wise exactly the same. Analogously, models run-
ning for a time period X on N, PEs should agree bitwise to models running a time
X /2 on Ny, PEs plus X/2 on N, PEs. The second check is more encompassing since
it tests both the integrity of the code used to start and stop the model (i.e., restarts),
as well as the internal functioning of the model’s algorithms in a parallel computa-
tional environment.

211.1 Testing for reproducibility

There are two basic ways to test that answers reproduce across PEs. The first is to do
a binary comparison of the restarts produced at the end of runs realized on different
PEs. A second way is to examine the “ending checksums” printed at the bottom of
the MOM4 printout file (the file produced from stdout). This checksum will exhibit
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differences when there is a bug. The preferred method for checking reproducibility
is the checksum approach. The reason is that for some processor counts, we have
found that the number “0” within a restart file can be translated into the equivalent
“-0”. Doing a binary difference of the restart files can then lead to the misconception
that there is a significant difference. In these cases, the checksums written to the
prinout files will remain identical to the bit. The problem with plus/minus zero in
the restart files remains under investigation. Again, it is of no consequence to the
ability of the stdout checksums to reproduce.

Bit-wise reproducibility is often a computationally expensive means of com-
puting. Hence, forcing the model to exhibit such reproducibility for all numerical
diagnostics may be prohibitively expensive on some platforms. Therefore, some
diagnostics (e.g., energetics) printed to stdout will not agree to the bit, and so can-
not be used to verify reproducibility across PE counts. Other diagnostics, such as
single time step diagnostics for tracers, are bitwise reproducible and can therefore
be used to verify the model is properly reproducing.

211.2 Reproducibility between static and dynamic allocation

Reproducibility across PEs, across restarts, and between static/dynamic memory
allocation are important constraints that generally must be maintained in order for
the code’s integrity to remain solid. All test cases run on the GFDL SGI Origin
machine satisfy these constraints.

However, maintaining a bit-wise agreement between static and dynamic arrays
on other machines, such as a Beowulf cluster at GFDL, has been found difficult to
achieve. Based on the bit-wise agreement found on the SGI Origin, we believe there
is no bug in the code. Instead, we speculate that some compilers may not allow for
bit-wise agreement when changing the way memory is allocated. Note that the
motivation for using static allocation is far less when running on the Beowulf, since
timing differences are much smaller than on the SGI Origin.

In general, we hope to resolve the static and dynamic differences in efficiency
found on SGI machines, both by working with compiler writers and modifying
certain FMS code algorithms. If we succeed, we plan to remove the static option in
the near future.
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Part 11

Fundamentals of MOM4
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FUNDAMENTALS OF MOM4

The purpose of this part of the MOM4 Guide is to provide some grounding in
the fundamental physical, mathematical, and numerical aspects of MOM4. There
are many topics omitted here, with the book by [ ] suggested for those
wishing to understand fundamentals underlying ocean climate models. Nonethe-
less, there are many details outlined in this part of the MOM4 Guide that are useful
to those wishing to understand certain details of the model’s algorithms.
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This chapter presents a summary of the ocean primitive equations. We also
describe their ensemble mean form discretized in MOM4. Full details are provided

by [ l.

3.1 Orthogonal coordinates and the Traditional Approxima-
tion

The ocean primitive equations are based on taking the Traditional Approximation to
the Navier-Stokes equations. This approximation represents a statement about the
spherical geometry on which fluid parcels move. We summarize here some key
mathematical results of use in the following.
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Figure 3.1: A schematic of the coordinates used for describing fluid dynamics on
a rotating sphere, where the rotation axis is aligned through the north pole of the
sphere. The coordinate 0 < A < 277 is the longitude, with positive values measured
eastward from Greenwich, England. The coordinate ¢ is the latitude, with values
¢ = 0 at the equator and ¢ = 7/2(—7/2) at the north (south) poles. The radial dis-
tance r is measured here with respect to the center of the sphere. The explicit coor-
dinate transformations are x! = r cos pcos A, x> = r cos ¢psin A, and x*> = r sin ¢.
Note that for many idealized geophysical fluid studies, cartesian coordinates refer to
those defined locally to a tangent plane at some point on the surface of the rotating
sphere. Such f-plane or f-plane coordinates (e.g., [ , D
are distinct from the cartesian coordinates defined here.

3.1.1 Spherical and Cartesian coordinates

The World Ocean forms a thin layer of fluid moving on the rotating earth. For
purposes of ocean climate modeling, it is sufficient to approximate the earth as

a sphere (see [ ] for a discussion). Such constitutes a fundamental
distinction from non-geophysical fluid mechanics formulations of the equations of
motion (e.g., [ 1), where the equations are typically de-

rived in 3D Euclidean space. A rigorous and lucid treatment of fluid motion on
arbitrary surfaces is given by [ I

Figure 3.1 provides a schematic illustrating the relation between spherical and
Cartesian coordinates of use for describing fluid dynamics on a rotating sphere. The
axis of rotation passes from the southern pole to the northern pole of the sphere.
Both sets of coordinates are fixed on the rotating sphere (non-inertial coordinates).
In the next subsection, we note that MOM4 generalizes the angular coordinates
(A, @) to allow arbitrary locally orthogonal coordinates to specify angular positions
on the sphere.

3.1.2 Elements of horizontal orthogonal coordinates

MOM4 is written in generalized horizontal coordinates, where horizontal means
coordinates within a locally defined tangent plane on the surface of a spherical
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earth (see Figure 3.1). The use of orthogonal curvilinear coordinates (&1, £2) allows
for the squared infinitesimal distance between two points in the ocean to be written
as

(ds)? = (hy d&Y)? + (hy dE?)? + d22, (3.1)
where the metric, or stretching functions, h; and h; are non-negative. In terms of
the dimensionful physical horizontal distances

dx = hdé&t (3.2)
dy = hydé?, (3.3)
the line element takes the compact form
(ds)? = (dx)* + (dy)* + (dz)?, (3.4)
the volume of an infinitesimal Eulerian region of the ocean is given by
dV = (h1d&l) (hy dé?)dz = dxdy dz, (3.5)
and the physical components of the horizontal partial derivatives are
0y = hi'o (3.6)
0y = hy' 0. (3.7)

Figure 3.2 illustrates these formulae. Notably, although the introduction of phys-
ical displacements brings the metric tensor into a form analogous to that for 3D-
Euclidean space, the non-Euclidean nature of the sphere manifests by the non-
vanishing commutator

[0:,9,] = 0,0, — 8,3, = (3x In dy) 3, — (3y In dx) s, (3.8)

which vanishes only when the horizontal geometry is flat instead of curved. In
particular, the use of spherical coordinates leads to

0., 0,] = (tagqb) 0. (3.9)

3.1.3 Geometry of the Traditional Approximation

The Traditional Approximation assumes that the metric functions #; and h; are
dependent only on the horizontal coordinates (&!,&2). Radial dependence of the
metric functions is reduced to a constant radial factor R, where

R =6.371 x 10°m (3.10)

is the radius of a sphere with the same volume as the earth. Therefore, the distances
used to compute partial derivatives, covariant derivatives, areas, and volumes are
determined by a metric tensor whose components are functions only of the hori-
zontal position on the sphere.

This geometric approximation is accurate for many purposes because the ocean
forms a thin layer of fluid moving on the outer part of the earth. For example, ver-
tical motions of fluid parcels in stratified regions of the World Ocean occur over
distances of only a few centimeters to meters per day, which is far smaller than the
earth’s radius. For larger deviations, such as those occuring in convective regions,
the Traditional Approximation may be less useful (see [
for a discussion).
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El

Figure 3.2: Illustrating the generalized horizontal orthogonal coordinates used in
MOM4. The coordinate lines intersect at right angles, but generally do not fol-
low lines parallel to constant longitude or latitude on the sphere. An infinites-
imal horizontal region has area given by dA = (h;d&') (hpdé?) = dxdy. For
spherical coordinates (£!,£2) = (A, ¢), the infinitesimal horizontal distances are
dx = (r cos ¢p)dA and dy = rdd¢.

3.2 Ocean primitive equations

The laws of classical physics, including Newtonian mechanics and linear irreversible
thermodynamics, form a theoretical basis for a physical description of ocean dy-

namics. MOM4 also exploits the Traditional Approximation described in Section

3.1. Although previously fundamental to z-coordinate ocean models, MOM4 has

eliminated the Boussinesq approximation using the methods of [

A full accounting of how MOM4 discretizes a non-Boussinesq is given by [

The purpose of this section is to summarize these equations.

3.2.1 Kinematics, dynamics, and tracers

In fluid mechanics, mass conservation is associated with fluid kinematics, whereas
momentum conservation constitutes the fluid dynamics. Mass conservation for a
fluid parcel renders a relation between velocity and in situ density often known as
the continuity equation

pi+V-(pv)=0. (3.11)

Conservation of linear momentum for a fluid parcel leads to the prognostic equa-
tion for the velocity field

(pv) i+ V- (pvv) = —pgz— (f+ M)2Apv—Vp+pFY), (3.12)
In these equations, p is the in situ density,
v = (u,) (3.13)
is the three-dimensional velocity field, p is the pressure field, and
M =v0,Indy —ud,Indx (3.14)

is the advection metric frequency arising from the non-Euclidean nature of the sphere.
The friction vector F(V) is associated with momentum transport due to molecular
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viscosity.! Following the Traditional Approximation, we assume a hydrostatic bal-
ance for the vertical momentum equation, thus rendering

(pu);+V-(pvu) = —(f+M)zApu—Vp+pFW (3.15)
Pz = —pP§- (316)

Coupled to the mass and momentum equations is the equation for conserva-
tion of tracers. There are three main ocean tracers: passive tracers, such as certain
biological constituents, the active tracers temperature and salinity, and dynamical
tracers such as potential vorticity. The terms passive and active refer to their influ-
ence on density, thus influencing dynamics through pressure. MOM4 time steps
the equations for passive and active tracers, whose form is generally given by

(pT);+V-(pTv)=—-V-(pF)+pS. (3.17)

In this equation, T is the tracer mass per mass of water (i.e., the tracer concentration),
The tracer flux F is interpreted as that arising from sub-grid-scale (S5GS) molecular
processes, such as molecular diffusion. It will be reinterpreted in terms of ensemble
averages in Section 3.3. § is an interior tracer source term whose form depends on
details of the particular tracer.

3.2.2 Boussinesq equations

The Boussinesq equations are recovered by setting p — p, wherever it appears,
except when multiplying gravity

Vv =0 (3.18)
u;+V-(vu) = —(f+M)z2Au—V(p/p,) +FW (3.19)

p: = —pPg (3.20)
T, +V-(Tv) = —V-F+8. (3.21)

The constraint V - v = 0 means the Boussinesq fluid parcels conserve their volume
instead of their mass.

3.2.3 Vertically integrated equations

To time step the dynamical equations, it is most efficient to separate the fast ver-
tically integrated processes from the slower vertically dependent processes. For
this purpose, we integrate the continuity equation over the full ocean column of
thickness

D=H-+n, (3.22)

where H = H(&!, £2) is the time independent ocean depth, and 1 = n(&!, &2, ) is
the time dependent deviation of the ocean surface from its resting state at z = 0.
Assuming mass sources/sinks only at the ocean surface leads to the balance of mass
per unit area within an ocean column

(ﬁz D),f =—p V- U + Pw Juw (3.23)

IEnsemble averaging (Section 3.3) introduces more substantial SGS processes associated with
larger-scale turbulence, such as that occuring at the ocean’s microscale to mesoscale ranges.
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as well as the surface and bottom kinematic boundary conditions

p(0r+u-V)n=pygw+pw atz=rn (3.24)
u-VH+w=0 atz = —H. (3.25)
In these expressions,
~ n
po U= / dzpu (3.26)
-H
is the depth integrated horizontal momentum density,
n
ﬁZ:174(/ dzp (3.27)
-H
is the depth averaged density, p, is a constant density set to
po = 1035kg/m? (3.28)
(see page 47 of [ 1), and py gy is the mass per unit time per unit horizontal

area of fresh water crossing the ocean surface.
To consider the time tendency for free surface height 17, we expand the columnar
mass balance (3.23) to reveal

ﬁz T’,t == —Pov‘ﬁ-i-pw Qw - Datﬁz- (329)

Consequently, the ocean surface height is affected by three processes: convergence
of vertically integrated momentum, mass entering through the ocean surface, and
dilatations of the water column associated with changes in vertically integated den-
sity field (i.e., steric effects).

A similar analysis for a Boussinesq column of fluid, assuming volume sources/sinks
only at the ocean surface, leads to the balance of volume per unit area within an
ocean column

ni=—V-U+qy (3.30)
as well as the surface and bottom kinematic boundary conditions
(Oi+u-V)n=gp+w atz=n (3.31)
u-VH+w=0 atz = —H, (3.32)
where .
U:/ dzu (3.33)
-H

is the depth integrated horizontal velocity field, and g, is the volume per unit time
per unit horizontal area of fresh water crossing the ocean surface. Notably, the sur-
face height is affected only by convergence of vertically integrated momentum and
surface fluxes of volume; steric effects are absent in Boussinesq fluid kinematics.

3.3 Ensemble averaged ocean primitive equations

The ocean is fundamentally turbulent. Given sensitive dependence on initial con-
ditions, and the limitations of ocean measurements, it is not possible to obtain com-
plete knowledge of the ocean state. Therefore, when formulating the ocean’s gov-
erning equations, it is necessary to recognize our limited access to information.
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3.3.1 Ensemble averages

A common way to account for incomplete information is to consider ensemble av-
erages. As in statistical mechanics, ensemble averages are obtained by formally
considering an infinite number of ocean states, each of which is described by the
kinematic, dynamic, and tracer balances of Section 3.2. Our interpretation of en-
semble averages directly associates the distance in phase space between members
of an ensemble with the space-time scales that are not resolved by the “averaged
observer.” Assuming z-coordinates, we take ensemble averages at a fixed point in
space-time (i.e., a single point Eulerian average), and note that they commute with
all space-time derivatives and integrals.

Even though we specify averaging at a particular space-time point, there remain
ambiguities in details of the averaging method. Different methods reveal different
aspects of the averaged or mean dynamics, and deviations from the mean. Den-
sity weighted averaging plays a central role in our preferred method. Such averag-
ing has recently become more commonplace in the ocean modeling literature (e.g.,
[ ;2 ], yetit has long been part of the compressible fluids liter-
ature (e.g., [ ] as noted in the footnote on pages 21-22 of | D.

3.3.2 Averaged kinematics independent of dynamical assumptions

There are two forms of fluid parcel kinematics of importance for ocean modeling:
parcels conserving their volume and parcels conserving their mass. In general,
parcel kinematic relations provide constraints on the fluid that are maintained re-
gardless the dynamics. Therefore, we believe it to be key to the integrity and usabil-
ity of the equations describing the ensemble averaged ocean, and consequently the
ocean model, that kinematics of the averaged fluid remains independent of dynam-
ical assumptions. In particular, we do not wish to require specification of unknown
closure terms, whose form depends on dynamical details, in order to determine
kinematic relations satisfied by the averaged ocean or the ocean model. Care in for-
mulating and interpreting the averaged equations is required to maintain this very
basic principle.

A key motivation for using density weighted averaging is that it assists in our
desire to keep the averaged parcel kinematics independent of dynamical closure as-
sumptions. Providing such a simple mapping between unaveraged and averaged
kinematics generally does not require much thought when averaging the Boussi-
nesq equations, since volume conservation V - v = 0 is a linear constraint. Yet
for non-Boussinesq equations, mass conservation p; + V - (v p) = 0 is a nonlinear
constraint, thus requiring extra consideration.

Besides the mathematical utility of the density weighed approach for the non-
Boussinesq system, [?] argued for maintaining this average even when considering
the averaged Boussinesq equations. Their reasoning is based on noting that the
resulting Boussinesq system is far more accurate than the mean-field equations re-
sulting from non-density weighted averages. In this context, accuracy is based on
comparing with the small levels of diapycnal mixing in the ocean interior.
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3.3.3 Linear momentum density

For the purpose of ensemble averaging, the linear momentum density (momentum
per volume)
PV =,V (3.34)

plays a fundamental role. Hence, let us introduce it to the unaveraged balances
from Section 3.2 to yield

pt+pV-v=0 (3.35)

Vi+ V- [(00/P) VY] + (po/p) M2 AV = —(p/po) §2 — f2 AV — V(p/po) + (p/ o) EV)
(3.36)
(PT)t+po V- (TV) ==V -(pF)+pS, (3.37)

where we wrote the advection metric frequency as

M =v0;Indy —udy,Indx = (p,/p) (v0xIndy —ud,Indx) = (p,/p) M. (3.38)

3.3.4 Summary of the averaged equations

Details of the averaging process require more discussion that warranted here. We
refer the reader to [?], [ ],and [
for systematic development. For the present purposes, it is sufficient to summarize
the results from [ 1.

Using an angular bracket to signify ensemble mean, the averaged non-Boussinesq
equations take the following form. First, mass conservation for a fluid parcel and
for a vertical column of fluid is given by

(P +po V- (V) =0 (3.39)
(D*WZ) =00V - (U) + o 7, (3.40)

For the Boussinesq fluid, volume conservation for the parcel and column are given
by

V()

0 (3.41)
Uy -

V- (0) + (3.42)

In these equations, we introduced density weighted averages via

(p) (V)P = (p¥), (3.43)

and the linear momentum density of fresh water

Po qw = Pw Juw- (344)

A starred quantity represents a modified mean field given by an infinite series of
ensemble mean correlations ([ ). The precise relation between the
starred quantities and the correlations is not important, since the modified mean
fields provide the appropriate field to discretize in an ocean model, instead of the
corresponding ensemble mean field.
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The surface and bottom kinematic boundary conditions for the non-Boussinesq
fluid are

()i + 00 (@) - V" = po (W) +podyy,  atz=n" (3.45)
(u) - VH+ (w) =0 atz=—H (3.46)
and for the Boussinesq fluid we have
ni+ () - Vo' = (w) + 45, atz =n* (3.47)
(u) - VH+ (w) =0 atz = —H. (3.48)
The tracer budget for the non-Boussinesq fluid is
(P} (T))+ 2o V- (V) (T)?) = —po V - (Fgs) + () ()" (3.49)
and for the Boussinesq fluid
9 (T)?+ V- ((V)(T)?) = =V - (Fsgs) + (S)”. (3.50)

Finally, the non-Boussinesq momentum budget is

(V)i + V- (V)P () + (M) 2 A (v)P =
—((0)/p0) g2 — f2 N (%) =V ((p)/p0) + (i) (3.51)

whereas the Boussinesq budget is

V)i + V- (V) (V) + (M) 2A(v) =
—((P)/Po) 82— f2 N (V) =V ((p)/po) + (Fi). (3.52)
Recall that (v) = (v)? for a Boussinesq fluid, whereas p, (v) = (p) (v)? for the
non-Boussinesq case. In the tracer equations, the SGS flux term is given by
pFses = p T, v, = p, Fogs, (3.53)

which dominates the contribution from molecular diffusion. The SGS friction vec-

tor F;’gs likewise incorporates SGS turbulence terms

PFyl =V - (pv,v}) +2 A p My v, = p, Fly). (3.54)
The averaged equations have the same mathematical form as the unaveraged

equations given in Section 3.2. Precisely, the mapping between unaveraged and
averaged fields is given by

o — () (3.55)
p—(p) (3.56)
v — (V)P (3.57)
v — (V) (3.58)
T — (T)° (3.59)
F — (Fygs) (3.60)
S — (S)° (3.61)
FV— <F§g5> (3.62)
n—n' (3.63)
Juw — Jop- (3.64)

o = - (3.65)
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This mapping is very useful for purposes of analyzing properties of the two sys-
tems, such as their energetic balances discussed in Chapter 6. The fewer equations
we need to concern ourselves with, the better!

3.4 Mapping to ocean model variables

Having established a set of self-consistent averaged equations, we are ready to
write down the equations to be discretized in the numerical model. The discretiza-
tion is applied to the appropriate averaged continuous equations, which are written
down in this section in a bit more tidy manner than in the previous section.

First, the density variable to be discretized by the ocean model is the Eulerian
mean density

(0) = Pmodel- (3.66)

Again, this is the in situ density used for the mass continuity equation. It is gen-
erally distinct from potential density. At this point the “model” suffix refers to the
continuous ocean model, since no discretization has yet occured. Through the hy-
drostatic approximation, (p) — pp,,dqe] 1€ads to

<p> — Pmodel- (3.67)

As argued in Section 3.3.2, maintaining a tidy form of the averaged continu-
ity equation motivates our discretizing (v), instead of the conventional (v). The
distinction is nontrivial for both non-Boussinesq and Boussinesq ocean models.
Hence, we make the correspondence

(%) = Vinodel- (3.68)

Analogously, we choose to use (T)” in our model, instead of the conventional (T)

{T)” = Tmodel (3.69)

Again, the distinction between (T)? and (T) is nontrivial for both non-Boussinesq
and Boussinesq ocean models. Finally, the surface height in the ocean model corre-
sponds to the modified mean surface height n*

" = Nmodel- (3.70)

as will the modified mean surface fresh water flux

T — (9w)model- (3.71)
These mappings lead to the following equations to be discretized in the non-
Boussinesq ocean model (dropping the “model” subscript for brevity)
pr+poV-v=0 (3.72)
(ho*) ;= —po V-U+poqu (3.73)
v+ V- [(po/p) v+ (po/p) M2 NV =

- (P/Po)gi—fiAV—V(P/Po)—F (p/Po) FV) (3.74)
(PT)t+pV-(vT)=—pV-F+pS, (3.75)
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where we also made the correspondence

(Fsgs) = Frodel (3.76)
(5)” = Smodel (3.77)
<F§gs> ad F;Ilodel. (3.78)

These equations are combined with the surface and bottom kinematic boundary
conditions

PNt pou-VNn=pw+p,qe atz=mn (3.79)
u-VH+w=0 atz = —H. (3.80)

The mapping from unaveraged to averaged fields, and then from averaged to model
fields, is summarized in Table 3.1. This table is the key result from this chapter.

The continuous model equations presented above are identical in form to the
continuous unaveraged non-Boussinesq equations summarized in Section 3.2. Al-
though in the end somewhat trivial (i.e., what a round-about way to get back to the
same equations!), the intermediate steps reveal a nontrivial interpretation of the
fields discretized in the numerical model. It is hoped that such care in providing a
precise physical and mathematical interpretation for the variables adds rigor and
clarity to the foundations of MOM.

The Boussinesq model equations arise by setting p,,nqe] — Po, €xcept when
multiplying gravity. These equations are

V-v=0 (3.81)

ni=—-V-U+gy (3.82)
Vi+V-(vV)+M2Av=—(p/p.)g2—f2Av—V(p/p,) +F¥)  (3.83)
T,+V-(vI)=—-V-F+S8 (3.84)

along with the surface and bottom kinematic boundary conditions

net+u-Vn=w+qy atz=n (3.85)
u-VH+w=20 atz = —H. (3.86)
As emphasized by [?] and [ ], upon

making the hydrostatic approximation, these equations for the Boussinesq ocean
model are identical to those integrated by the Boussinesq version of MOM, with the
exception of details that have been absorbed by the turbulence tracer and momen-
tum fluxes F and F¥. Additionally, McDougall et al. argue that the interpretation of
model fields as proposed here allows for the Boussinesq equations to be far more
accurate than the alternative interpretation. Hence, for this reason, and for reasons
of mathematical elegance, we prefer the interpretation summarized by Table 3.1 for
the variables carried by the Boussinesq and non-Boussinesq versions of MOM.
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Unaveraged | Averaged Model Model Discrete
p (p) Pmodel p
4 {p) Pmodel P
v (¥) Vmodel v
v (v)” Pmodel Virjnode] = PoVmodel PV =poV
n n* "Tmodel
qw qu (qw>mode1 Jw
T (T)” Tmodel T
‘? <§>p model S
F <F?g§> F{n)odel F
E) (Fsgs) l:model )

Table 3.1: Correspondence between unaveraged continuous fields, ensemble aver-
aged continuous fields, continuous model fields, and discrete model fields.
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The purpose of this chapter is to detail the horizontal B-grid used in MOM4 as
well as the specification of field and grid values in halo regions.

4.1 The B-grid used in MOM4

The continuum partial differential equations of MOM4 are derived and discussed
]. Semi-discrete versions of these equations are also discussed,
where the equations are cast on an Arakawa B-grid. As summarized in the review

in [

article by [

the B-grid allows for a reasonably accurate representation of geostrophic currents
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even when running a coarse grid model. It was this property that motivated [
to choose the B-grid. Future model development, in which the first baroclinic radius
of deformation is assumed to be well resolved, will likely focus on the C-grid. The
reasons are that the C-grid typically performs better at fine resolution than course,
and it has some advantages over the B-grid when discretizing transport operators.
Nonetheless, as pointed out by [
there will always be unresolved baroclinic modes, such as in the equatorial region.
Hence, the B-grid may continue to have some advantage even at fine resolution.
The purpose of this section is to document the grid used in MOM4. In addi-
tion to the usual B-grid conventions, we describe grid factors used to build discrete
derivative and integral operators. Chapter 16 of The MOM3 Manual [
provides a complete discussion of the three slices x — y, x — z, and y — z. Although
we briefly discuss the vertical grid, our main focus is on the horizontal x — y plane
since this is where details of domain decomposition on parallel computers is con-
sidered.

4.1.1 Variables on the B-grid

Figure 4.1 illustrates the horizontal arrangement of prognostic model fields used
in MOM4'’s B-grid. The B-grid places both horizontal prognostic velocity compo-
nents at the same point. MOM'’s convention is that this point lives at the “northeast
corner” of the corresponding tracer cell, where northeast is in a generalized sense
when using general orthogonal coordinates. With half-integer notation, the U-point
lives at (i +1/2, j + 1/2) whereas the T-point is at (i, j). As density is a function of
temperature, salinity, and pressure, density is naturally defined at the tracer point,
as is hydrostatic pressure.

The vertical velocity component is defined according to the requirements of con-
tinuity across the tracer and velocity cells. Hence, this component lives at the bot-
tom face of the corresponding cell. Once the horizontal grid placement is defined,
the vertical position is specified for both the grid point and the vertical velocity po-
sition. Chapter 16 of The MOMS3 Manual provides further details of the vertical
grid.

4.1.2 Describing the horizontal grid

With a generalized horizontal grid, there are many grid distances required to com-
pute discrete derivatives and integrals. When constructing the grid distances in
MOM4, we aimed to design a structure useful for both B and C-grids.! It is with
this goal in mind that the names for the grid distances in the grid_generator mod-
ule are distinct from grid distances used in MOM4’s grids module. We note the
mapping between the two grid conventions in the following.

4.1.2.1 Four basic grid points and corresponding cells

On both the B and C grids, it is useful to consider the tracer cell as the basic cell, and
all other cells in their relation to the tracer cell. Given this convention, there are four

1Other grids can also be accounted for using the conventions described here. Our focus is on the
B and C grids, as these are the two most commonly used grids in ocean modeling.
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c
o=
z

Figure 4.1: Illustration of how fields are placed on the horizontal B-grid used in
MOMA4. Velocity points U; j x are placed to the northeast of tracer points T;  x. Both
horizontal velocity components u; ; x and v;  x are placed at the velocity point Uj .

basic grid points and corresponding grid cells that can be identified: T; ;, E; j, C; j,
and N; ;. Figure 4.2 illustrates these points as oriented according to the tracer cell,
with T; ; the usual tracer point. C;; lives at the northeast corner of the tracer cell,
and so represents B-grid velocity point U; j. N; ; lives at the north face of the tracer
cell and so represents the C-grid meridional velocity point. E;j lives at the east
face of the tracer cell and so is the C-grid zonal velocity point. The geographical
coordinates of these four points is sufficient to place them on the discrete lattice.

N(o'"') ®C(i,))

Tzyj) pECD

Figure 4.2: The four basic grid points for the B and C grids: T; ;, C; j, E; j, and N; ;.
T; j is the usual tracer point, with the corner C; ; and side points E; ;, N; ; associated
with the tracer point.
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4.1.2.2 Computing the grid distances

To support a discretized calculus, we must specify distances between grid points
and the grid cells. Knowing the geographical position of the four basic grid points
as well as the vertices of their corresponding grid cells is not sufficient. In addition,
we need information regarding the metric or stretching functions specific to the
coordinate system used to tile the sphere.

The traditional approach is to use spherical coordinates for tiling the sphere. In
this method, the distance between two points zonally displaced a finite distance
from one another is given by the analytic formula

Ap
Ax[a,b] = R cos ¢ / A = (R cos d) (A — Ad), 4.1)
Aa

and the distance between two points along a line of constant longitude is given by

b
Ayla,b] =R [ db=R (¢~ ¢u). (4.2)
ba

Writing this expression in a general manner leads to the generalized zonal and gen-
eralized meridional distance given by

38

Ax[a,b] = / Iy déy (4.3)
32
38

Ayla,b] = / hy dé;, (4.4)
5(17)
2

where (&1,&,) represent generalized orthogonal coordinates, and (h1,hy) are the
stretching functions specific to the coordinate system. They determine the distance
between two infinitesimally close points via the line element formula

(ds)? = (h1d&;)? + (hadéy)*. (4.5)

With dx = hydé; and dy = hy dé&,, the line element formula takes the form of the
usual Cartesian expression

(ds)? = (dx)? + (dy)>. (4.6)

It is not possible to perform the distance integrals analytically for an arbitrary
general orthogonal coordinate system. Therefore, approximations must be made.
Indeed, in MOM3 the analytical form for the zonal distance was actually approxi-

mated according to
Ax =~ R cos ¢ 4.7)

where ¢ = (¢1 + ¢2) /2 (see discussion in Section 39.6 of |
Assuming information is available only at the grid points and at the cell vertices,

D
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MOM4 chooses to compute the distance between two points along a generalized
zonal direction (i—line) as

Axfa,b) = |6 =] (W + 1) /2 (4.8)

Likewise, the distance along a generalized meridional direction (j—line) is com-
puted as

Ayla, o) = el =&l (W) + 1) /2. (4.9)

4.1.2.3 Grid distances carried by the model

Given coordinates for the grid points and grid vertices, as well as the stretching
functions evaluated at these points, we can use the approximate expressions (4.8)
and (4.9) to compute distances between the T,U,N, and E points. Figure 4.3 shows
the notation for the grid distances that define four quarter-cells splitting up each
tracer and velocity cell. Shown is the notation used in the grid descriptor module
as well as that used in MOM4. The full dimensions of the tracer and velocity cells
are shown in Figure 4.4, where again the distances computed in the grid descriptor
module are translated into the grid distances used in MOM4. Finally, Figure 4.5
shows the distances specifying the separation between adjacent tracer and velocity
points.

4.2 The Murray (1996) tripolar grid

The [ ] tripolar grid (see his Figure 7) has been a focus of ocean climate
model development with MOM4 during the year 2001-2002. This grid is comprised
of the usual spherical coordinate grid southward of a chosen latitude circle, typi-
cally taken at 65°N. This part of the grid has a single pole over Antarctica, which is
of no consequence to the numerical ocean climate model. In the Arctic region, the
Murray grid places a bipolar region with two poles situated over land, and so these
poles are also of no consequence to the numerical ocean model.

Figure 4.6 illustrates the grid lines used to discretize the ocean equations in the
Arctic using Murray’s grid. The placement of discrete model tracer and velocity
points along the bipolar grid lines is schematically represented in Figure 4.7. The
arrangement of northern and eastern vector components centered on the tracer cell
faces is shown in Figure 4.8. Details for how to transfer information across the
bipolar prime meridion located along the j = nj line are provided in Section 4.3.

Motivation for choosing the [ ] grid includes the following:

e It removes the spherical coordinate singularity present at the geographical
north pole.

¢ It maintains the usual spherical coordinate grid lines for latitudes southward
of the Arctic region, thus simplifying analysis.

e It is locally orthogonal, and so can be used with the MOM4 generalized hori-
zontal coordinates.
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Figure 4.3: Upper panel: Grid distances used to measure the distance between the
four fundamental grid points shown in Figure 4.2. These distances are computed
in the FMS grid descriptor module. The naming convention is based on a Cartesian
grid with the origin at the lower left corner of the tracer cell at (0,0), the upper
right hand corner is (2, 2), the center at (1, 1), and all other points set accordingly.
The distances are then named as distances between these grid points. Note that
each tracer cell has a local Cartesian coordinate set as here, and so there is redu-
dancy in the various grid distances. Lower panel: When read into MOM4, the grid
distances set the distance between the tracer and velocity points used in the model
(Figure 4.1) and the sides of the corresponding grid cells. A translation of the upper
panel distance names to those used in MOM4 is made within MOM4's ocean_grid
module.
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Figure 4.4: Grid cell distances used for computing the area of a grid cell. These
dimensions are related to the fundamental quarter-cell dimensions shown in Figure
4.3. Upper panel: distances computed in the FMS grid descriptor module. Lower
panel: names of the distances used in MOM4.
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Figure 4.5: Distances between fundamental grid points (upper panel) as computed
by the grid descriptor module. These distances are taken into MOM4 and used to set
the distances between tracer and velocity points (lower panel).
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/Ilug=1

j=nj

i=0=ni i=ni/z

i=ni/
i

Figure 4.6: Illustration of the grid lines forming the bipolar region in the Arctic.
This figure is taken after Figure 7 of [ ]. The thick outer boundary is a
line of constant latitude in the spherical coordinate grid. This latitude is typically at
the latitude nearest to 65°N. As in the spherical coordinate region, lines of constant
i move in a generalized eastward direction. They start from the bipolar south pole
ati = 0, which is identified with i = ni. The bipolar north pole is at i = ni/2. As
shown in Figure 4.7, the poles are centered at a velocity point. Lines of constant j
move in a generalized northward direction. The bipolar prime-meridion is situated
along the j-line with j = nj. This line defines the bipolar fold that bisects the tracer
grid. Its fold topology causes the velocity points centered along j = nj to have a
two-fold redundancy (see Figure 4.7 for more details).

e Similar grids have been successfully run by the French OPA modeling group
and the Miami MICOM modeling group.

4.3 Specifying fields and grid distances within halos

MOM4 has been designed to run on multiple parallel processors. The computation
of finite derivative operators requires the passage of information across processor
boundaries. In particular, the decomposition of the model’s global domain into mul-
tiple local domains requires that fields and grid information from one local domain
be mapped to halos of adjacent local domains. For second order numerics, the
calculation of derivatives on the boundary of a local domain requires information
within one grid row halo surrounding the local domain. Higher order numerics
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Figure 4.7: Schematic representation of the tracer and velocity cells on the bipolar
grid shown in Figure 4.6. The global computational domain consists of ni = 12
i-points for this example. The j = nj line bisects the tracer grid, which means there
are redundant velocity points along this line. Along an i—line of velocity points,
velocity cells with i = ni/2 live at the bipolar north pole, whereas velocity cells
with i = 0 = ni live at the bipolar south pole.
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Figure 4.8: Schematic representation of fields living at the north and east faces of the
tracer cells as configured using the bipolar grid shown in Figure 4.6. Typical fields
of this sort are diffusive and advective tracer flux components, and so they are
components to a vector field, hence the vector notation. The global computational
domain consists of ni = 12 i-points for this example. The j = nj line bisects the
tracer grid, which means there are redundant velocity points along this line. Along
an i—line of velocity points, velocity cells with i = ni/2 live at the bipolar north
pole, whereas velocity cells with i = 0 = ni live at the bipolar south pole.
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PE(5) PE(4)

Figure 4.9: Elements of halos needed for computing derivative information on a
local domain. The hatched region is comprised of halo points needed in order for
the processor labelled PE(0) to time step its equations. The halo values must be
transmitted from the surrounding processors since they live outside of PE(0)’s local
domain.

require larger halos.

4.3.1 Interior domains

Within the interior of the ocean model, away from global boundaries, the mapping
between domains is performed using an FMS utility that fills the halo points for
one local domain using information available to another local domain. Figure 4.9
illustrates this basic point. Shown is a central processor, arbitrarily labelled PE(0),
and a surrounding hatched region representing halo points. The width of the halo
is a function of the numerics used in the model. For second order numerics, a halo
width of a single point is sufficient. The values of fields and grid factors within the
halo are transmitted from the surrounding processors to PE(0) in order for PE(0) to
time step its portion of the ocean equations discretized on its local domain.

4.3.2 Exterior domains

For processors whose boundary touches the global model boundary; it is necessary
to specify whether the global boundary is a solid wall as in a sector model, periodic
as in a zonal channel, or folded as in the bipolar grid of [ ]. That
is, we must specify the model’s topology. Each of these three topologies requires
some special consideration, with the cases built into the MOM4 update boundary
condition module. Since these conditions are specific to the experimental design,
they are handled by a MOM4 module that sets the boundary conditions. We focus
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here on the three common topologies supported by MOM4. A fourth case, open
boundary conditions, is discussed separately in chapter 22.

4.3.2.1 Solid wall boundary conditions

For a solid wall boundary condition, all fluxes passing across the walls are zeroed
out via masks, and fields within the solid wall are either trivial or masked. Hence,
no halo updates are necessary for fields and fluxes at solid walls. However, it is im-
portant to specify self-consistent grid distances separating points within the solid
wall from those within the model’s computational domain. The reason is that vari-
ous remapping operators require grid distances be well defined for all points within
the computational domain, including those distances reaching into the halo. See
Chapter 5 for details of remapping operators. For this reason, we extend the grid
into the solid wall halo so that resolution in this region is given by the resolution
between the two nearest interior points.

4.3.2.2 Periodic boundary conditions

Zonally periodic channels (x-cyclic) are commonly run for idealized studies. Meri-
odionally periodic (y-cyclic) domains may also be of interest for simulations on an
f—plane or B-plane. For these reasons, we need to specify grid factors within the
halo assuming periodicity at the global domain boundary.

We focus here on the needs of the more common zonally periodic boundary
conditions, and refer to Figure 4.10. The same considerations hold for y-cyclic con-
ditions. For either case, we envision the grid wrapped onto itself in the appropriate
direction. With second order numerics, computation of the prognostic tracer in grid
cells Ti—1,; requires information regarding Ti—o ;. Likewise, T;—; ; requires informa-
tion about Ti—;;1,;. Higher order numerics will need to reach out further.

First consider the eastern boundary of the domain where i = ni. For a single
grid halo, we need to specify values of fields living at the T, E, N, and C points at
i = ni+ 1 (recall Figures 4.1 and 4.2 where the C point is equivalent to the B-grid U
point). Zonal periodicity renders the equalities

Thiv1,; = Ty (4.10)
Eniv1,; = Ei (4.11)
Nyiv1,; = Nipj (4.12)
Chit1,j = Cyj (4.13)

More generally, halo points with ni < i < ni + halo acquire the x-cyclic mapping

Tij = Ti-nij (4.14)
Ei,] = Ei—ni,]’ (4.15)
Nij = Nini; (4.16)
Ci; Ci—ni,j- (4.17)

At the western boundary, similar considerations lead to halo points 1 — halo <i <1
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Figure 4.10: A zonally periodic array of tracer and velocity points with a single
halo point. In this example there are ni = 6 points in the global computational
domain, and halo = 1 point in the surrounding halo region. The cyclic mapping
leads us to specify halo points with values Ti—o; = Ti=pi j, Ti=ui+1,;j = Ti=1,j, and
Ui=o,j = Ui=ni,;-

mapped to interior points according to

Tij = Titnij (4.18)
Eij = Eitni, (4.19)
Nij = Nigni,j (4.20)
Cij = Citnij- (4.21)

4.3.3 The bipolar Arctic grid

The ideas considered for the cyclic case are now generalized to the more complex
topology of the [ ] bipolar grid shown in Figures 4.6 and 4.7. In par-
ticular, Figures 4.7 and 4.8 allow us to deduce the mappings between related points
on the grid.

4.3.3.1 Fields defined at points T,U,N, and E

The generalized zonal direction (along a constant i-line) is treated with the x-cyclic
conditions shown Figure 4.10. It is the bipolar prime meridion along the j—line
with j = nj that introduces the most subtle issues. This line bisects the tracer grid.
Relating points across the prime meridion requires knowledge of the tensorial na-
ture of the field being considered. In particular, scalar fields map without a change
in sign, whereas components of a vector field have a sign change.

The U—points contain a two-fold redundancy of points along the j = nj line.
For scalars living at these points, such as some grid factors, we have the identity

Uinj = Uni—inj- (4.22)

Likewise, scalars living at the northern face of a tracer cell contain a two-fold re-
dundancy of points along the j = 7] line so that

Ninj = Nui-it1,nj- (4.23)
For vector components living at U—points, such as the B-grid horizontal velocity
field, we associate transition across the j = nj meridion with a sign change

Uinj = —Uni—inj (4.24)

Vinj = —Unizipnj- (4.25)
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This sign change takes the right handed orientation into a right handed orientation
across the meridion. Likewise, for components of vector fluxes living at the north
face of a tracer cell, we have
Fi’\l]i/nj - _F{\lfni—iﬂ,nj' (4'26)

Note that numerical roundoff may compromise these equalities in the model. Such
compromise will generally make the model energetics appear to be larger than
when running with the spherical grid, or with the tripolar grid with the fold closed
(debug_tripolar = .true.).

Moving along a j-line, halo points for scalar fields with nj < j < nj + halo are
evaluated according to the following rules

Ti,j = Thi-i+1,2nj—j+1
Ui j = Uniionj—j
Nij = Npi—it12mj—j
Eij = Eniignj—j+1

for nj < j<mnj+halo (4.27)

Vector components living at these points have the same index mapping along with
a sign flip for the field values.

4.3.3.2 Grid distances for horizontal quarter-cells

Grid distances must also be specified in halo points. Some distances also maintain
redundancy relations. Since grid distances are taken between T,U,N, or E points,
their redudancy relations and halo mappings are determined by those of their end-
points. We start by considering the grid factors defining the dimensions of quarter-
cells defined in Figure 4.3. These require the most care. Figure 4.11 illustrates the
placement of these factors on the bipolar grid. Immediately we see that the two-
fold redundancy in the velocity cells U; ,,; leads to the two-fold redundancy in grid
cell distances

dueiyj = dutwpi_jp; (4.28)
duw;yj = duepjy; (4.29)
dun;nj = dusyiinj (4.30)
dusiyj = dunyiinj. (4.31)

Now consider the mappings needed to evaluate distances within halos. First
consider the distances associated with the tracer cells. By definition, dte; ; measures
the distance between the tracer point T; ; and its “eastern” neighbor E; ;, and dtw;
is the distance between T; ; with its “western” neighbor E; 1 ;, where “eastern” and
“western” are in a generalized sense. Mathematically, these distances are

AX(Ti,]', Ei,]') = dtei,]- (432)
AX(TI'/]‘, Eifl,j) = dtwi,]- (433)
where Ax(A, B) is the distance between points A and B computed according to

the generalized zonal distance in equation (4.8). The question is how to map these
distances across the bipolar fold. To do so, we note that if we are in a halo region
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where nj < j < nj+ halo, then the scalar mappings given by equation (4.27) lead
to

AX<T1]/E ) = Ax(Tni—i+1,2nj—j+1/ Eni—i,an—j+l) (4.34)
Ax(Tl]I Ei 1,]) = Ax(Tni—1'-i-1,2nj—j—&-1/ Eni—i+1,2nj—j+l)' (4.35)

Comparison of these equalities with the definitions of dte and dtw then leads to the
halo cell relations

dtel] = dtwm i+1,.2nj—j+1 } . . .
for nj < j<mnj+ halo 4.36
dth] dteyi—it1 2nj—j+1 J=1=1 ( )

Distances to the northern and southern faces of the tracer cell, dtn and dts, are
defined by

Ay(Tj,Nij) = ding; (4.37)
Ay( 1]/N1] 1) == dtsi,j (438)

where Ay is the generalized meridional distance given by equation (4.9). Equation
(4.27) indicate that within the halo region nj < j < nj + halo,

y(Tz]/N ) = A}/( ni—i+1,2nj— ]+11Nnifi+1,2njfj) (439)
Ay(Tl]/Nl] 1) - Ay( ni—i+1,2nj— ]+1/Nnifi+1,2njfj+l)- (440)

Comparison of these equalities with the definitions of dtn and dts leads to the halo
cell relations

dtnij = dtsyiiy1,0j-j+1 } . '
’ ’ for nj < j<mnj+ halo 4.41
dts;j = dtnyi—it1,2nj-j+1 I=i=" (4.41)

Velocity cell distances are defined by

Ax(U; j, Niy1,;) due; ; (4.42)
Ax(U;j, Nij) = duw; (4.43)
y( ijr 1]+1) = duni,]’ (4.44)
Ay(Uij, Eij) = dus; (4.45)

Equation (4.27) indicate that within the halo region nj < j < nj+ halo,

Ax(U;, jr Ni, ]) = Ax(Uyi- i2nj—jr Nni—i,an—j) (4.46)
Ax(U;, ji» Ni, ) Ax(Uy;- i,2nj—jrs Nnifi+1,2njfj) (4.47)
Ay( ijr 1]+1) = AX( ni—i2nj—js Enifi,anfj) (4.48)
y( i ]/ ) = Ax( ni—i2nj—js Enifi,anf]#l)/ (4-49)
which then leads to the halo cell relations
due;; = dutwp;jonj
Auw,j = dueni—ionj- for nj < j<mj+halo (4.50)

dun;j = dusyi_jomj-;
dus;j = duny;_ionjj
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Figure 4.11: Placement of quarter-cells distances at the bipolar fold. For this exam-
ple, there are ni = 4 points in the generalized zonal computational domain. Equiv-
alance of grid factors on the fold leads to the two-fold redundancy for velocity cell

distances due; ,j = duwy;_;,j and dus; ,j = dun;_; ;.
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4.3.3.3 Grid distances for horizontal full cells

Inspection of Figures 4.4 and 4.5, with the definitions of grid points shown in Figure
4.2, leads to the definitions of distances for full horizontal cells

AX(EZ 1],E ]) = dxti,j (4.51)
A]/( i,j—1s N; ]) = d]/ti,j (4.52)
Ax(U;_1,;,U;j) = dxtn; (4.53)
Ay(ul jr ul] 1) = dytei,j (4.54)
Ax(T; ], Tiy1,)) = dxte;; (4.55)
Ay( z]r 1) = dytni,j (4.56)
Ax(NZ is N ]) = dxui,]- (4.57)
Ay( ijr 1]+1) = dyui,j (4.58)

Figures 4.12, 4.13, and 4.14 show these distances for regions surrounding the bipo-
lar fold. To generate the redudancy conditions and halo mappings, we again use
the scalar mappings given by equation (4.27). Using these relations we see that
redundancy is satisfied by the distances

dxtni,j = dxtng ii1nj (4.59)
dytninj = Adytnpi—ii1,n (4.60)
dxuipj = dXUpijpn; (4.61)
dyuinj = dYuni—in; (4.62)

Equation (4.27) indicates that within the halo region nj < j < nj 4 halo,

Ax(E;_1,j, E; ) AX(Epi—iv1,2nj—j+1, Enicignj—j+1) (4.63)
Ay(Nij-1,Nij) = Ay(Nuiziy12nj—j+1, Nuicis1,20j-f) (4.64)
Ax(U;- 1], i) = Ax(Uniciv1,2nj—j Uni-ipnj—j) (4.65)
Ay(U;;, Uj - 1) = Ay(Uniipnj—jr Uni-ipnj—j+1) (4.66)
AX(TZJIT 1)) = AxX(Tui-iv12nj—jr1, Tnicianj—j+1) (4.67)
AY(Tij, Tijr1) = AY(Tui-iv120j—j+1, Tuiviv1,20j—) (4.68)
Ax(NlijH-l ]) = Ax( ni—i+1,2nj— ]/Nm—z',an—j) (4.69)
Ay(Eij, Eij11) AY(Eni-ipnj—j+1, Eni-ianj—j) (4.70)

which then leads to to the halo cell relations

dxtij = dxtuiiy1,20j—j+1
dytij = dytpiiv12mj—j+1
dxtnj = dxtnn i 1onj-;
dyte;j = dyte,i iz j+1
dxte; j = dxteni ipnj—j11
dytn; j = dytng i 1mj-;
dxu;j = dXUpijonj—
dyuij = dyuni—ionj—j

for nj < j<nj+halo (4.71)
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Figure 4.12: Placement of tracer cell dimensions at the bipolar fold. For this
example, there are ni = 4 points in the generalized zonal computational do-
main. Equivalance of grid factors on the fold leads to the two-fold redundancy
dxti’li,n]‘ = dxtnm',lqu,n]'.
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Figure 4.13: Velocity cell distances at the bipolar fold.
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Figure 4.14: Grid distances for tracer points at the bipolar fold.
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Halo relations (nj < j < nj+ halo)

Redundancy relations

Uij = eUpizipnj—j

Uinj = € Uni—inj

Tij = € Tnizit1,2nj—j+1

Ni,j = € Npi—it12njj

Ninj = € Npi—it1,nj

Eij=¢Eniipnj—jt1

dtei,j = dtwnifl”rl/z”j*]drl

dtw; j = dteni_iv1nj—j11

dtni; = dtsui_iy1,20j—j11

dtsij = dtnyi_iy100jj+1

duejj = dutwpi_ipnj

dueij = dutwpi_i;

duw; ; = dueyi_ipnjj

duwi,n]- = duem',i,n]’

duni; = dusi_ionj |

dunz-,n]- = dusm-_l-,n]-

dus;j = dunyi_ionjj

dusinj = dunyi_inj

dxti; = dxtuiiy100j—j+1

dytij = dytpi_it12nj—j11

dxtn; = dxtng iy 10/

dxtnn; = dxtnn_iy1n;

dytei; = dyteni—ionj—j+1

dxte;j = dxteni_ipnj—jt+1

dytn;;j = dytnuiiv12nj-

dytnin; = dytnui_iyi,n;

dxu;j = dXUpi_jpnjj

dXUipj = dXUpi_jnj

dyui,j = dyini—ipnjj
i i=i

dyuinj = dyipi—inj

Table 4.1: Summary of the halo mappings and redundancies realized at the bipolar
fold. The symbol ¢ is 1 for scalar fields, and —1 for horizontal components of vector

fields.

4.3.3.4 Summary of redundancies and halo mappings

Table 4.1 summarizes the halo relations and redundancies realized at the bipolar
fold. Notice that those distances exhibiting a redundancy have their halo relations
reduce to their redundancy relations for j = nj. Additionally, the quarter-cell dis-
tances all transform from a right handed system to a right handed system. In gen-
eral, this table should be sufficient to deduce relations for any derived fields, fluxes,
etc., computed in the model.
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The purpose of this chapter is to discuss the computation of advection velocity
components in MOM4. We also discuss the linear operators used to interpolate a
field from one grid to another. These operators are used to map advection velocity
components from the tracer grid to velocity grid, as well as to map selected other
fields.

5.1 General considerations

Advective fluxes are fundamental to the Eulerian evolution of tracer and momen-
tum. How these fluxes are discretized represents a basic problem in computa-
tional fluid dynamics. Notably, because of the interpretation of model velocity dis-
cussed in [ ], there is no distinction between the advective fluxes for
the Boussinesq and non-Boussinesq versions of MOM4: they are computed using
the same numerical considerations detailed in this chapter.
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5.1.1 Two main issues

There are two considerations required to compute advective fluxes of tracer or mo-
mentum. First, there is the question of how to compute the advective velocity. Such
is the focus of this chapter. For computing fluxes across cell faces, the three com-
ponents to the advective velocity must be known on the corresponding face of the
tracer and velocity cells. However, on the B-grid, both horizontal prognostic veloc-
ity components are placed at the velocity cell point, not at the cell faces. Hence, an
averaging operation must be prescribed to diagnose the horizontal advective ve-
locity components from the prognostic B-grid velocity. MOM4 computes the hor-
izontal components of the advection velocity on the faces of T-cells in a manner
necessitated by equating pressure work to buoyancy (see Chapter 6). The vertical
advective velocity component is then diagnosed at the bottom face of the tracer
cell, based on the needs of volume or mass conservation across the tracer cell (see
Chapter 6 or [ ). Computing the advective velocity on the faces of the
velocity cell remains to be determined, and that is the main technical subject of this
chapter.

Once the advective velocity is computed on the cell faces, it remains to approx-
imate the tracer and momentum values on these faces for use in constructing the
advective tracer and momentum fluxes. There are many different approaches avail-
able. As with previous versions of the GFDL ocean model, MOM4 chooses to com-
pute the advective flux of momentum according to the requirements of energetic
consistency described in Chapter 6. These constraints necessitate a second order

centered approach, as in [ ]. The advective flux of tracer, however, is
not so constrained and there are hence many options available, some of which are
detailed in The MOM3 Manual of | ].

5.1.2 Constraints for discrete vertical velocities

One important constraint for self-consistency of the discretization is that the vertical
velocity at the T-cell bottom topography must vanish: w_bt; j ,—nx = 0, since the T-
cell top and bottom faces are horizontally oriented. A vanising bottom velocity
on T-cells is necessitated by the requirements of volume or mass conservation (see
[ 1). Many ocean models choose to set w_bt; jr—nx = 0. However,
MOM chooses to start from the ocean surface and integrate the continuity equation
downwards. Verification that the computed w_bt; ; ,—ny indeed vanishes has been
found to be a very useful check on code integrity. Relatedly, for a flat bottomed
ocean w_bu; jr—nx = 0. However, with topography, w_bu is generally nonzero at
the bottom, since the bottom on velocity cells is not flat. Section 22.3 in The MOM3
Manual of | ] details this point.

Furthermore, since the interior of the ocean domain uses constant cell thick-
nesses, in a Boussinesq model volume should be conserved (the ocean surface con-
serves volume when also incorporating the possibly nonzero fresh water fluxes).
Hence, integrating w_bt; ;, across a particular depth k > 1 should leave no net
volume flux upward or downward: y; ;dxt; jdyt; jw bt; j = O for all levels k.

Finally, volume conservation warrants the MOM4 approach for diagnosing sur-
face height on the U-cell, %, according to an area weighted average of the sur-
rounding T-cell heights 117, instead of using the minimum operation used in MOM3
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and described in the | |
paper. This issue is relevant for the Boussinesq and non-Boussinesq versions of
MOM4. We visit this issue in Section 5.3.

5.2 Remapping operators for horizontal fluxes

As stated in Section 5.1, MOM4 computes the horizontal components of the T-cell
advection velocity in a manner necessitated by equating pressure work to buoyancy
(see Chapter 6). The vertical component is diagnosed based the needs of continuity.
Hence, we assume the T-cell advective velocity components are known. We thus
need to determine the corresponding advective velocity on the face of velocity cells.

Advective velocities represent fluxes of volume per unit area. There are three
remapping operators that take discrete volume fluxes defined at tracer points or
sides of tracer cells, to discrete fluxes defined at velocity points or sides of velocity
cells. Although MOM4 is generally non-Boussinesq, we use the ideas of volume
conservation to generate algorithms for coupling advective velocities on the sides
of tracer cells to those on the sides of velocity cells. Here, we describe the linear
remapping operator taking horizontal advective velocities centered on the face of a
tracer cell to the corresponding face of a velocity cell.

5.2.1 Uniformly distributed volume flux across a face

Reference to Figure 5.1 reveals four eastward fluxes of volume per area leaving
a tracer cell that surround the single flux per volume leaving the corresponding
velocity cell. The flux leaving a tracer cell is denoted by Et in the figure, which is
a shorthand for the model’s thickness weighted advective velocity uh_et, with the
thickness factor dropped since we are concerned here with fluxes at a fixed depth.
Eu denotes the corresponding eastward flux leaving the velocity cell, and this flux
is to be determined in terms of the surrounding Et and appropriate grid distances.

We assume that along the face of a tracer cell, volume leaves through the face
with a uniform distribution. Hence, the volume per unit length per time passing
across the meridional face through the velocity point U; ; is given by

Et(i,j)dus(i, j) + Et(i, j + 1) dun(i, j), (5.1)

where the distances dus and dun are lengths along sides of the four quarter-cells
comprising a single velocity cell (Figure 5.2). Likewise, the volume per unit length
per time passing across the meridional face through the velocity point U;,1,; is
given by
Et(i+1,j)dus(i+1,j) +Et(i+1,j+1)dun(i+1,j), (5.2)
and the volume per unit length per time passing across the eastern face of the ve-
locity cell U; ; is given by
Eu(i,j)dytn(i+1,7), (5.3)

where Eu is to be determined in terms of Et, and the grid distance dytn is the merid-
ional distance between tracer points, as defined in Figure 5.3.
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5.2.2 Lever-rule and the horizontal remapping operators

We now employ linear interpolation, or a lever-rule average, to construct the vol-
ume per time passing across the east face of the Uj ; cell, thus leading to

Eu(i,j)dytn(i+1,j)dxtn(i+1,j) = [Et(i,j) dus(i, j) + Et(i, j+ 1) dun(i, j)] duw(i+ 1, j)
[Et(i+1,j)dus(i+1,j)+ Et(i+1,j+1)dun(i+1, j)] due(i, j),
where dxtn is the zonal distance along the north face of a tracer cell (Figure 5.4).
Solving for Eu leads to the remapping operator
Eu(i,j) = REMAP_ET_TO_EU(Et)(i, )
= [Et(i,j)dus(i, j)duw(i+1,j) + Et(i, j + 1) dun(i, j) duw(i + 1, j)
+ Et(i+1,j)dus(i+1,j)due(i,j)+Et(i+1,j+1)dun(i+1,j)due(i,j)]

datnr(i+1, ), (5.4)
where datnr is the reciprocal area at the north face of a T-cell given by
1
tnr(i, j) = .
datnr (i, j) dxtn(i, j) dytn(i, j) 5.3)

Analogous considerations lead to the remapping operator that takes a volume flux
Nt defined at the north face of T-cells to a flux leaving the north face of U-cells
Nu(i,j) = REMAP_NT_-TO_NU(Nt)(i,j)

= [Nt(i,j)duw(i,j)dus(i,j+1) + Nt(i + 1, j) due(i, j) dus(i, j + 1)

+ Nt(i,j+1)duw(i,j+1)dun(i, j) + Nt(i+ 1, j + 1) due(i, j + 1) dun(i, j)]

dater(i, j+1). (5.6)
In this expression, dater is the reciprocal area at the east face of a T-cell given by
1
dater(i, j) = 7
ater(i, ) dxte(i, j) dyte(i, j)’ (57)

dxte is the zonal distance between the T-cell points (Figure 5.3) and dyte is the
meridional distance along the east face of the T-cell (Figure 5.4).

5.3 Remapping operator for vertical fluxes

We now consider the remapping taking vertical volume fluxes passing across the
bottom face of tracer cells to the bottom face of velocity cells. This operator also
maps surface height from T-cells to U-cells. This remapping is distinguished from
the horizontal remapping in that there is no analogous lever-rule step. The distinc-
tion boils down to noting that the vertical remapping REMAP_BT_TO_BU moves
vertical fluxes horizontally, whereas the east and north remapping operators move
horizontal fluxes horizontally.

Reference to Figures 5.2 and 5.3, and again assuming fluxes are distributed uni-
formly across a cell face, indicates that the vertical flux of volume per unit length
passing across the southern face of the velocity cell U; ; is given by

Bt(i, j) dte(i, j) + Bt(i + 1, j) dtw(i + 1, j), (5.8)
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Figure 5.1: Schematic representation of the remapping function

REMAP_ET_TO_EU defined by equation (5.4). This function is used to remap
a horizontal flux of volume defined at the east face of T-cells (denoted by Et in
this figure) onto a horizontal flux of volume defined at the east face of U-cells
(denoted by Eu in this figure). The four fluxes Et(i, j), Et(i + 1, j), Et(i,j + 1), and
Et(i+1,j+ 1) are used to construst the flux Eu(i, j).

the vertical flux of volume per unit length passing across the northern face of the
velocity cell U; ; is given by
Bt(i,j+1)dte(i,j+ 1)+ Bt(i+1,j+1)dtw(i+1,j+ 1), (5.9)
and the vertical flux of volume passing through the velocity cell is given by
Bu(i, j) dxu(i, j) dyu(i, j). (5.10)

Assuming that the total flux passing through the velocity cell is equivalent to that
passing across the northern plus southern parts of the cell leads to

Bu(i, j) dxu(i, j) dyu(i, j) = [Bt(i, j) dte(i, j) + Bt(i + 1, j) dtw(i + 1, j)] dus(i, j)
4 [Bt(i, j+ 1) dte(i, j+1) + Bt(i+1, j+ 1) dtw(i + 1, j + 1)] dun(i, j).

Solving for Bu yields the vertical remapping operator

Bu(i, j) = REMAP_BT_TO_BU(Bt)(i, j)
= [Bt(i, j) dte(i, j) dus(i, j) + Bt(i + 1, j) dtw(i + 1, j) dus(i, j)
+ Bt(i,j+1)dte(i,j+1)dun(i,j)+ Bt(i+1,j+ 1)dtw(i+1,j+ 1) dun(i, j)]
daur(i, j) (5.11)
with daur the reciprocal area of the U-cell

1

dxu(i, j) dyu(i, j) (5-12)

daur(i, j) =
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duw(i,j)

u(i,j) |
dus(i,j)

Figure 5.2: Time independent horizontal grid distances (meters) used for the tracer
cell T; ; and velocity cell U; ; in MOM4. These “quarter-cell” distances are refined
relative to those shown in Figures 5.4 and 5.5, and they are needed for the remap-
ping between T and U cells when computing advection velocities. All distances are
functions of both i and j due to the use of generalized orthogonal coordinates. Com-
paring with Figures 5.4 and 5.5 reveals the identities dtw(i, j) + dte(i, j) = dxt(i, j),
dts(i, j) +dtn(i, j) = dyt(i,j), duw(i, j) + due(i, j) = dxu(i,j), and dus(i, j) +
dun(i, j) = dyu(i, j).
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Figure 5.3: Time independent horizontal grid distances (meters) setting the spac-
ing between tracer and velocity points in MOM4. All distances are functions of
both i and j due to the use of generalized orthogonal coordinates. When these
distances are combined with those in Figures 5.4 and 5.5, and the quarter-cell dis-
tances given in Figure 5.2, we then have full information about the discrete hori-
zontal T and U cells on the model grid. Note there is some redundancy with the
distances defined in Figures 5.4 and 5.5, where we have dytn(i, j) = dyue(i — 1, j),
dxte(i, j) = dxun(i, j— 1), dxue(i, j) = dxtn(i+1, j),and dyun(i, j) = dyte(i, j+1).
Additionally, comparision with Figure 5.2 leads to the identities dyun(i,j) =
dun(i, j) +dus(i, j+ 1), dxue(i, j) = due(i, j) + duw(i+ 1, j), dytn(i, j) = din(i, j) +
dts(i, j+1),and dxte(i, j) = dte(i, j) + dtw(i + 1, j).
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Figure 5.4: Time independent horizontal grid distances (meters) used for the tracer
cell T; j in MOM4. dxt;; and dyt;; are the grid distances of the tracer cell in the
generalized zonal and meridional directions, and dat; j = dxt; jdyt; ; is the area of
the cell. The grid distance dxtn; ; is the zonal width of the north face of a tracer cell,
and dyte; ; is the meridional width of the east face. Note that the tracer point T; ; is
not generally at the center of the tracer cell. Distances are functions of both i and j
due to the use of generalized orthogonal coordinates.
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Figure 5.5: Time independent horizontal grid distances (meters) used for the ve-
locity cell U; ; in MOM4. dxu; ; and dyu; ; are the grid distances of the velocity cell
in the generalized zonal and meridional directions, and dau; ; = dxu; ; dyu; ; is the
area of the cell. The grid distance dxun; ; is the zonal width of the north face of
a velocity cell, and dyue; ; is the meridional width of the east face. Note that the
velocity point U; ; is not generally at the center of the velocity cell. Distances are
functions of both i and j due to the use of generalized orthogonal coordinates.



5.4. REMAPPING ERROR 97

5.4 Remapping error

There are two ways to compute the vertical velocity on the velocity cell. The first
method is to compute this velocity according to the requirements of continuity over
the velocity cell, using the convergence of the remapped horizontal advective ve-
locities entering the velocity cell. The second method is to use the vertical remap
operator REMAP_BT_TO_BU to move the vertical velocity on the tracer cells to the
velocity cells. The result of these two approaches is identical when the tracer and
velocity grids are related by a linear average operator, as is the case for a spherical
grid. The need to maintain a linear relation between the tracer and velocity grids is
based on the use of linear methods to derive the remapping operators.

5.4.1 Linear grids

MOM4 computes a diagnostic that examines the differences between the two ap-
proaches for computing vertical advective velocities. It reports the difference as
a “remapping error.” If the numerical discretization is self-consistent, then the
remapping error for a spherical grid will be roundoff, with values on the order
of 1072°m s~! common. Therefore, with a spherical grid, the remapping error pro-
vides a check on the self-consistency of the grid distances and the remapping op-
erators. Effectively, what is done is to check that volume is conserved with the
remapping operators. Even when running a non-Boussinesq model, the remapping
operators are constructed to respect volume conservation.

5.4.2 Nonlinear grids

For a grid defined via a nonlinear transformation of the spherical grid, such as the
bipolar region of the tripolar grid, the grid no longer maintains a linear relation
between tracer and velocity cell distances. The result is a nontrivial remapping
error. This error can be reduced by defining new remapping operators that account
for a generally nonlinear relation between tracer and velocity grid distances. Such
remains to be done for MOM4.

One consequence of the nonzero remapping error is that for a flat bottom model
in regions where the grid distances are nonlinearly related, w_bu; j—nx does not
vanish, even though continuity is maintained for all the grid cells. The problem is
that w_bu; j x—o is defined by

w,bui,]',k:() = REMAP,BT,TO,BU(w,bti’]‘,kzo). (513)

For nonlinear grids, the linear operator REMAP_BT_TO_BU results in a slightly
different value for w_bu; ji—o than would result from an integration of the conti-
nuity equation upwards from the bottom, assuming w_bu; j,—nx = 0. Because the
vertical advective flux at the ocean bottom is masked so that no momentum will
spuriously leak out the bottom of the ocean, having w_bu;  r—ny slightly nonzero
is of no consequence. Nonetheless, it would be more satisfying to have a general
remapping operator to clean-up this issue.
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5.5 Subtleties at the southern-most row

Consider the special case of j = 0 in Figure 5.1. This row is strictly south of the
southern-most latitude comprising the computational domain of the model. How-
ever, there is a subtlety related to the treatment of the eastward volume flux leaving
the velocity cell U; j—o. That is, since this cell straddles the tracer cells T; ;—o and
T; j=1, it contains some portion that is within the computational domain. Thus, the
eastward volume flux leaving this cell is nonzero, as it is comprised of weighted av-
erage of the four surrounding eastward fluxes leaving the tracer cells. Because the
remapping function (5.4) is normalized with the area datn = dxtndytn for j = 0, it
is necessary to know the grid factors dxtn; j—o and dytn; j—¢. In particular, dytn; j—¢
is the distance between the computed tracer point T; j—; and the tracer point T; j—o
that lives outside the computational domain.

The need to know dytn; j—o presents a problem with the MOM4 method for
computing grid specifications. Grids in MOM4 are computed in two steps. First,
there is a preprocessing step whereby grid factors are computed in a generic man-
ner compatible with other models used at GFDL. This step knows nothing about
halo regions, so it only computes grid information over the computational domain.
The result of this step is a NetCDF grid specification file. The second step is to read
the grid specification file into MOM4 and translate the generic grid information into
grid arrays used by MOMA4. Since there is no halo information contained in the grid
specification file, we cannot unambiguously specify values for the grid outside the
computational domain. And because we need dytn; j—o to be known consistently
with the values for dytn; ; with j > 0, we cannot simply fill dytn; j—o with an arbi-
trary placeholder. If we do so, then the remapping function used to compute the
eastward flux leaving the velocity cell U; j—o will be incorrect, thus compromising
the vertical velocity leaving U; j—o. The symptom will be most notable in spuri-
ously large values of the vertical velocity on the velocity cell at the computational
row j = 1, as well as huge remapping errors at j = 1.

There are three solutions to this problem. First, we could extend the definition
of the grid within the grid specification file to include the extra j = 0 row. This
solution has been rejected since it adds an extra calculation that is specific to the
northeast B-grid used in MOM4. As the grid specification file is designed for use by
all grid point models, it is not desirable to corrupt it with special cases. The second
solution is to require the southern-most row in MOM4 to be filled with land. This
solution is arguably inelegant, and it has indeed prompted some debate with the
MOM4 developers. Yet this is the solution used in the GFDL ice model, which is
also on a B-grid, and so it has been the most popular solution thus far in MOM4
when aiming to couple MOM4 to other models. The third solution is to extend
the grid southward within MOM4 after reading in the grid specification file. This
solution is appropriate if we can assume a spherical grid in the southern part of the
domain, as true in most cases.



CHAPTER
SIX

Energetics on the B-grid lattice

Contents

6.1 Introduction............... ... .. .. . ... 98
6.1.1 The utility of discrete energy conversions . . . . . ... .. 98

6.1.2 Continuous equations for the occanmodel . . . ... ... 99

6.1.3 Kinetic energy budget for a continuum ocean model parcel 99

6.14 Semi-discrete momentum budget . .. ... ... ... .. 100

6.1.5 Vertical advective velocities . . . . . . ... ... ... ... 100

6.2 Pressure workconversions . ... ......... ..., 101
6.2.1 Continuum results: Partl . ... ... ... ......... 101

6.22 Continuumresults: PartIl . . . . .. ... ... ... ... .. 102

623 B-gridresults .. ........ .. .. .. .. .. .. .. .. 103
6.2.3.1 Defining the horizontal advection velocities . . . 104

6.2.3.2 Completing the manipulations for Py . . . . . . . 105

6.2.3.3 Correspondence to the continuum results . . . . 106

6.2.34 The sigma-correctionterm P, . .. ... ... .. 107

6235 Summary . ... ... ... ..o 108

6.3 Kinetic energy advection . .............. ... ..... 109
6.3.1 Continuumresults . ... ... ... ... .. ........ 109

632 B-gridresults . ... ....... ... ... ... .. ... 110

6.4 Kinetic energy in the external and internal modes . . ... ... 113
6.5 A caveat regarding the tripolargrid . . ... ... ......... 114

The purpose of this chapter is to discuss energetic balances on the discrete B-
grid lattice. Most notably, choosing to maintain the integrity of certain balances
prescribes the form of the discrete advection velocity components located on the
sides of tracer cells. It also necessitates the use of second order finite differenced
advective fluxes of momentum. Tracer fluxes can remain arbitrarily discretized.
Energy balance diagnostics are important methods of use for checking the integrity
of algorithms.
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6.1 Introduction

This chapter is concerned with details of how the discrete model respects the con-
version between various forms of energy. For example, how does work done by
currents against the horizontal pressure gradient get converted into work against
gravity and/or compression? How does globally integrated discrete advection of
momentum get converted to boundary contributions? How do conversions differ
for Boussinesq and non-Boussinesq fluids?

As discussed in [ ], energy conversions in the continuum largely
follow from manipulations using the kinematic and dynamic balances. Analogous
manipulations occur on the lattice, yet with more care given to how various terms
are discretized. Maintaining exact discrete energic conversions is neither neces-
sary nor sufficient for ensuring a physically realistic solution. However, without
analytical solutions to compare with, discrete energy conversions afford the ocean
modeler some insurance that the numerical algorithm is performing with a degree
of physical integrity.

6.1.1 The utility of discrete energy conversions

Arbitrary discretizations generally fail to satisfy exact energy conversion proper-
ties. Hence, maintaining discrete energy conversions is a choice going beyond the
usual goal of providing a consistent discretization. Indeed, it can be considered a
guiding-principle, of which there are others affecting the design of MOM’s numerical
algorithms. These principles generally reduce many of the arbitrary choices other-
wise available when discretizing terms in a continuous partial differential equation.
Another analogous principle used in MOM insists that the discrete friction and dif-
fusion operators dissipate the discrete kinetic energy and discrete tracer variance,
respectively. [ ] details these issues.

MOM is predominantly of use for ocean climate modeling, where integrations
of many thousands of years are common. Therefore, it is essential that systematic
errors in algorithms, however small, be obviated. It is important for the develop-
ment of algorithms to have well defined energetic balances to test code integrity.
Without known analytic solutions, there remain few other methods to track down
bugs, short of hoping they manifest in an egregious and obviously unphysical man-
ner.

Unfortunately, it is often found that some physically relevant properties are sac-
rificed in order to ensure discrete energy conservation. Most notably, the smooth-
ness of the solution is often compromised. Hence, some model developers con-
sider order of accuracy to be the prime consideration for a numerical model. Yet
highly accurate operators do not always afford themselves exact discrete conserva-
tion laws; only approximate laws.

MOM maintains the traditional use of second order numerics for the momen-
tum equation. Doing so affords satisfaction of the discrete energy conversion prop-
erties described in this chapter. Efforts to increase order of accuracy are focused on
tracer advection, where various schemes are available beyond the traditional sec-
ond order scheme of | ]. Notably, the tracer advection scheme does not
affect considerations in this chapter.
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6.1.2 Continuous equations for the ocean model

The equations considered in this chapter represent discrete realizations of the con-
tinuum model equations presented in [ ]. For completeness, we re-
peat them here assuming hydrostatic balance. The non-Boussinesq hydrostatic
equations are

pi+pV-v=20 (6.1)
(DF) ;= —po V- U+ po (6.2)
W+ V- (vul) + M2AVP = —f2Av—V(p/po) + (p/p) EW  (6.3)
Pz=—P& (6.4)
(PT)t+po V- (vT) ==V - (pF)+pS, (6.5)

where
pvP =p,v (6.6)

is the linear momentum density. For finite domains, these equations are combined
with the surface and bottom kinematic boundary conditions

P+ Pou- V1= poW~+ Py qu atz=mn (6.7)
u-VH+w=20 atz = —H. (6.8)

The Boussinesq hydrostatic equations are recovered by setting p — p,, except when
multiplying gravity

V-v=0 (6.9)

nt=—-V-U+qq (6.10)

u,+V-(vu)+ M2zAv=—f2Av—V(p/p,) +FW (6.11)
p.=—pg (6.12)
T/+V-(vT)=—-V-F+S8. (6.13)

The surface and bottom kinematic boundary conditions are

netu-Vn=w-+qy atz =1 (6.14)
u-VH+w=0 atz = —H. (6.15)

6.1.3 Kinetic energy budget for a continuum ocean model parcel

As discussed in [ ], the kinetic energy of a fluid parcel is modified
by the effects of pressure and friction. It is useful to summarize these results in
order to anticipate some of the discrete manipulations made in this chapter. For
this purpose, multiply the momentum equation (6.3) by p, to find

(puP);+ V- (pvPu?) + pMP2IAVP = —f2 A pvP —Vp+ pFW, (6.16)

where we used the relation pv® = p, v for the linear momentum density. Now take
the inner product of this budget with the horizontal velocity u” to find

u’ - (pu);+ (u”);9;(p (v°); (u’);) = —u’-Vp+pu’- FW, (6.17)
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where tensor labels were exposed where needed for clarity. Use of mass conserva-
tion in the form p; + V - (pv?) = 0 leads to

(p}C),t—f-V- (prlC) = —up-Vp—i—pup-F(u), (6.18)

where

1
K= Eup -uf (6.19)

is the kinetic energy per mass of a continuum model fluid parcel. Notably, it is
the model’s velocity u”, not u, that determines the model’s kinetic energy. This
distinction is relevant only for the non-Boussinesq fluid, since for the Boussinesq
fluid u = u”.

6.1.4 Semi-discrete momentum budget

A starting point for discretizing the continuum equations is to integrate these equa-
tions vertically over the extent of a model grid cell. Vertical integration allows for
an explicit treatment of surface and bottom boundary conditions, whose details are
crucial for the proper forcing of the ocean model. [ ] derived such
semi-discrete budgets, where it was shown that the momentum budget for an inte-
rior model grid cell with k > 1 is given by

th (al‘ +f2 A ) Uz = _(hM z A up)Zk -V (huup)zk - (h Vp)zk/po + (hpFllzlorz)Zk
- [(w up)qu - (ZU up)Zk] + [(pKusz)qu - (pKuf)z)Zk]/pOI (620)

with hy the vertical thickness of the cell. The surface cell k = 1 has the budget

hy (0t +f2A) Uz = —(hM2z A uP)y =V - (huu)y — (hVp)z, /o + (hpFyy,,)z
+ 0, [powu® — prul]z, +pyt [—ul p1y+ pw g ul), + 1) (6.21)

The budget for a Boussinesq model is recovered by setting densitites to p, and u =
u”. For the surface cell, volume conservation in the form n; = —V - U + g, leads
to the Boussinesq balance

th (af +f2/\)u21 = _(hMZ A u)Z1 -V (huu)z1 - (h vp)21/p0 + (hF;zlorz)Zl
+ (wu—«kuz)z + [qu (uy —uy) +u, V-U+1/p,]. (6.22)

6.1.5 Vertical advective velocities

As discussed in [ ], the vertical component to the advective velocity is
diagnosed by constraining the discrete fluid to satisfy mass continuity over a grid
cell. At the base of a grid cell at depth level k > 1, the model’s vertical advective
velocity is given by

Wz = Wy, + V- (h u)zk + hzk 0; (p/po)zk/ (6.23)

where the time derivative term is dropped for Boussinesq fluids. For surface cells
wherek =1,

Po Wz, = (_pw Jw + Pz rl,t) +V- (h u)zk + hzk 0t (p/po)zk/ (624)
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thus prompting us to formally set
PoWzy = —Pw Juw + Pz 0t N (6.25)
which in the Boussinesq case reduces to
Wy, = —V - U. (6.26)

Note that it is important not to confuse the advective velocity w,,, diagnosed through
continuity, with the distinct vertical velocity w(z = 1) used in the surface kinematic
boundary condition.

6.2 Pressure work conversions

We follow here the derivation first given by [ ] for the rigid lid Boussi-
nesq model. Generalizations are given here for MOM4’s bottom partial cells, ex-
plicit free surface, and non-Boussinesq formulation. A practical result from this
section is the specification of discrete advection velocities used to transport tracers.

6.2.1 Continuum results: Part I

Following the discussion of Section 6.1.3, where we derived the local budget for
kinetic energy of a parcel

(PK)i+V-(pv?K)=—u’-Vp+pu”- FW, (6.27)

we start by noting that the projection of the horizontal velocity u” onto the horizon-
tal pressure gradient is given by
uw - Vp=v" - Vp—u’p,
=V.-(v"p)—pV v+ pguw’ (6.28)
where the hydrostatic balance p, = p g was used. The divergence V - v? vanishes
for a Boussinesq fluid, yet it represents a nontrivial conversion of kinetic to internal

energy for the non-Boussinesq fluid (see [ ]). Integration over the full
ocean domain yields

—/qu”-Vp: /dAp(up-Vn—w”)+/dV(pV-vp—wppg) (6.29)
z=1

where use was made of periodic and/or no-normal flow side boundary conditions,
as well as the bottom kinematic boundary condition. The surface kinematic bound-

ary
u’ - Vn—w’ = pyqw—pn; (6.30)

leads to

— [avw - vp= [ aapl(pu/e)au—md+ [AV(pV v —wpg). (631

zZ=n
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Note that mass conservation over a fluid column allows us to alternatively write
n
Pwfw — PNt =—poV-U+ / dzp, (6.32)
-H

with the second term, the so-called steric contribution, absent for the volume-conserving
Boussinesq fluid (see [ ] for more discussion of steric effects). In-
deed, for the Boussinesq fluid we have (1) v = v*, (2) V-v = 0, (3) the den-
sity p(n) appearing in the surface kinematic boundary condition is set to p,, (4)
Nt = —V - U + g, expressing volume conservation over a fluid column, thus lead-
ing to

—/qu-Vp: /dApV~U—/depg. (6.33)
z=1

It is useful to consider three special cases, the simplest of which is the rigid lid
Boussinesq ocean. Most rigid lid models suppress the addition of fresh water!, in
which case V - U = 0 thus rendering

/qu-Vp = /depg. (6.34)

That is, for the rigid lid hydrostatic Boussinesq ocean without fresh water forc-
ing, the global effects of work done by the horizontal currents against horizontal
pressure gradients are equal to the work by vertical currents against gravity. This
equality affords the following interpretation. In a hydrostatic fluid, vertically in-
tegrated density directly determines pressure. Hence, work against a horizontal
pressure gradient force is associated with a rearrangement of the density field in
the vertical, which then involves work against gravity.
A free surface Boussinesq fluid satisfies the more general balance

—/qu-Vp: /dApV-U—/depg. (6.35)
z=n

The surface term accounts for the possibility of atmospheric pressure to apply work
to a dilatating vertical column of fluid.

For a free surface non-Boussinesq fluid, the full identity (6.37) is applicable.
The new term pV - vP accounts for the ability of pressure forces internal to the
fluid to do work on dilatating fluid parcels, and the term [,_ . dA (p/p) (/" dzp,)
accounts for work done by atmospheric pressure on a column of ocean fluid ex-
periencing expansion and/or contraction due to changes in the depth integrated
density—the so-called steric effects.

6.2.2 Continuum results: Part II

As noted in Section 6.1.1, one motivation for considering the discrete energy con-
versions is that they provide guidance on how to discretize objects in the model. In

1 ] noted the possibility of relaxing this restriction, yet we know of no realistic model
having implemented this approach.
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particular, they guide how to discretize advection velocities on the faces of tracer
cells. With the B-grid used in MOM4, it is otherwise not obvious how to compute
these velocities. An alternative to the approach in Section 6.2.1 provides insight
for this purpose, with the distinction relevant only for the non-Boussinesq case.
Instead of u” - Vp, we here consider

u-Vp=v-Vp—-wp,
=V.-(vp)—pV-v+pgw. (6.36)

The divergence term V - v = —p;/p, vanishes for the Boussinesq fluid. Integrat-
ing over the ocean domain and using the surface and bottom kinematic boundary
conditions leads to

—Po/qu-VP = / dAp (pwGw — PM,t) —po/dV[p(p,t/po) +wpgl, (6.37)
z=1

where use was made of periodic and/or no-normal flow side boundary conditions.
This result reduces to the same Boussinesq result (6.33) considered in Section 6.2.2.
The non-Boussinesq case is distinct.

6.2.3 B-grid results

We now consider manipulations of the globally integrated discrete B-grid repre-
sentation of u - Vp analogous to those discussed in Section 6.2.2. Note that in this
section, discrete grid labels will be exposed when appropriate, with many labels
suppressed to reduce clutter.

As stated in Section 6.2.2, we prefer a discrete analysis of u - Vp rather than
u” - Vp because of the guidance u - Vp provides for discretizing the tracer advection
velocities, as well as the ability to use the resulting discrete balance to check code
integrity. However, for the non-Boussinesq case, the direct interpretation of each
term according to a work per time is not as straightforward as for the considerations
of Section 6.2.1.

The domain integrated scalar product of the horizontal velocity u and the hori-
zontal pressure gradient —Vp is given by

= — > daudhu [uFDX_NT(FAY(p)) +vFDY_ET(FAX(p))]
ik
+ &Y daudhu [uFAY(FAX(p) 6;H)/dxu + v FAX(FAY (p) 6;H) /dyu]6.38)
ik

MOM4 employs the following forward derivative operators

FDX_NT(a) = % (6.39)
FDY ET(a) = “”dly;”f (6.40)

where the derivatives live on the east and north faces, respectively, of a tracer cell.
The operators 6;H and 6;H compute the forward difference

§H = Hiq—H (6.41)
§jH = Hy1—H, (6.42)
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of the bottom topography. The first term in equation (6.38) is the lateral pressure

gradient taken between cells living on the same discrete k-level. The second term
arises from the use of bottom partial cells, where the depth of a k-level is generally
a function of horizontal position. This term is the same that appears in terrain-
following sigma models. In both cases, the horizontal pressure gradient is given by
two terms

Vp=(Vo+VeHd,)p=Vep—pgVsH, (6.43)

where the hydrostatic balance p , = —p g was used to reach the second relation. The
slope of sigma surfaces can reach 1/100 next to continental slopes, at which point
the “sigma-coordinate correction term” p ¢ V,H can be on the order of V;p. In this
case, the horizontal pressure force becomes the result of two sizable terms, each
having separate numerical errors that generally do not cancel. The result can be
spurious pressure forces that drive nontrivial unphysical currents. As described by
[ ], the sigma correction term introduces only
very minor spurious currents in MOM due to (1) MOM'’s use of z-levels throughout
the region above the topography, thus isolating the sigma-correction term to just the
bottom-most level, (2) The discrete horizontal pressure gradient is chosen so that
if pressure is a linear function of depth, then the discrete gradient vanishes. This
discretization choice greatly reduces the magnitude of spurious flows.

6.2.3.1 Defining the horizontal advection velocities

Focus on the zonal piece of the first term

Pix = — z dau dhu u FDX_NT(FAY (p))
ik
1
= —5 Zdyu dhu uéi(pj—kp]-“)
= — Y BAY(dyu dhu u) 8ipj, (6.44)

where the boundary terms drop out for either periodic or solid wall conditions, and
we introduced the backward meridional average operator

_ aj+aj

BAY (a) 5

(6.45)

Let us now define the zonal thickness weighted advective transport velocity on the
eastern face of a tracer cell as

BAY (dyu dhu u)

uh,eti,]-,k = dyte, j

, (6.46)

where dyte; ; is the meridional width of the tracer cell’s east side (see Figure 6.2 for
definitions of grid distances). Doing so leads to

Pix = — Z 5ip (dyte uh_et)
= Z p i (dyteuh_et)
= Y pdat BDX ET(uh_et), (6.47)
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where boundary terms vanish, and

a: ;dyte: : —a;_1.dvyte; 1 ;
BDX ET(a) = “ 2200 — Bt L (6.48)
i,j

is a backwards finite difference operator for fields defined on the east face of tracer
cells. Similar manipulations with the meridional term v 9, p leads to

P1 =S pdat (BDX ET(uh_et) + BDY NT(vhnt)), (6.49)

with
BAX(dxu dhu v)

dxti’li,]'

vh,nti,j,k = (650)

the meridional tracer advective velocity on the north face of the tracer cell, and

a; idxtn; i —a; i dxtn; ;i
BDY_NT(a) = —1—— s (6.51)
i,j

is a backwards finite difference operator for fields defined on the north face of tracer
cells.

The horizontal advective velocities uh_et and vh_nt are defined at the sides of
the tracer cells and at the depth of the tracer point. Hence, their finite differenced
derivatives are defined at the tracer point. The corresponding vertical velocity w_bt;
is also defined at the horizontal tracer point, yet at the bottom of the tracer cell, at
the “W-point”. As discussed in Section 6.1.5, the vertical advective velocity compo-
nent is diagnosed through continuity. In a discrete form, this velocity component is
given by

w_bty = w_bty_1 + BDX_ET(uh_ety) + BDY_NT(vhnty) + dht; 0; (px/po). (6.52)

In this equation, dht; ;  is the vertical thickness of the tracer cell, the time derivative
term is absent for Boussinesq fluids, and (see Section 6.1.5)

po w_bty = P10t 1M — P Juw (6.53)
for the non-Boussinesq fluid, and
wbty = -V -U (6.54)

for the Boussinesq fluid.

6.2.3.2 Completing the manipulations for P;

Substitution of expression (6.52) for the vertical advective velocity component into
equation (6.49) leads to

P1=— z pr dat (w_bty_1 — w_ bty + dht; 0¢ (pr/Po)), (6.55)
with rearrangement of the sums rendering
P = z datz-,]- (—p1 w_bty + Puk+1 w_bt) (6.56)
1]

+Y dat dhaty w_bt P PR 1 S pedat dht 0, p, (6.57)

i dhwtk Po ik
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where dhwt; ;1 is the vertical distance between tracer points Ty and Ti,;. The
Pnk+1 W-bt,, boundary term vanishes since w_bt,; = 0; however, the surface term
p1 w-btg is nonzero for a free surface model where w_bty # 0 (e.g., equations (6.53)
and (6.54)).

The discrete hydrostatic pressure is computed as an estimate of pressure at the
depth of the tracer point, rather than as an average pressure over the full tracer cell
(Figure 6.1). That is,

Pr+1 = px + g dhwty b, (6.58)

where p* = (pr + pxs1)/2 is the vertically averaged density over the tracer cell.
Using this pressure then leads to

1
Pl = — g datz-,]- (Pl w,bto + g % dhwtk w,btk ﬁz —+ E ; Pk dl’ltk dt ,Ok> . (659)

6.2.3.3 Correspondence to the continuum results

It is useful to make a correspondence with terms from the continuum given in Sec-
tion 6.2.2. First, a rigid lid Boussinesq fluid with zero fresh water flux has

P1=— z dﬂti,]' (g ; dhwt, w_bty, ‘Okz> , (6.60)
L]

where w_bty = 0 and the density time tendency term vanishes. Hence, in this
case, work by horizontal currents on the horizontal pressure gradient equals work
against gravity. Allowing for a free surface Boussinesq fluid yields

P1=- z dati,]' <—p1 V-U+g z dhwt w_bt; p;f) p (6.61)
1,] k

where the density time tendency term vanishes and w_bty = —V - U. The added
term accounts for work done by pressure p; at the surface tracer point on a dilatat-
ing vertical column of fluid. This pressure is given by

p1 = p1 8§ (dhwty_o + eta_t) + pasm (6.62)

where eta_t is the surface height on tracer cells, and dhwt;_¢ is the distance from
z = 0 to the k = 1 tracer point z;. This pressure has a contribution from the
hydrostatic pressure within the fluid layer between z = eta_t and z = z;, and that
from the overlying atmosphere. For a non-Boussinesq fluid, equation (6.53) for
w_bty leads to

Pr=- ; dat; <(P1/Po) (0101 — Pw Guw) + & ; dhwty w_bty " + %dhtk Pk Ot Pk) ,

(6.63)
which again has a direct correspondence to the continuum results.
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ok
Td hwt(k)

®k+1

Figure 6.1: Schematic of the vertical grid cell arrangment used for computing the
hydrostatic pressure at a depth k + 1 in terms of the pressure at depth k using the
equation py1 = px + gdhwt, pr*. The vertical average of density is meant to ac-
count for the part of density within each of the two adjacent cells. The factor of 1/2
used in the average operator yields an approximate average when vertical cells are
non-uniform. Yet the 1/2 factor is used for all vertical grid spacing since it renders
a simple conversion of discrete pressure work to discrete gravity work.

6.2.3.4 The sigma-correction term P,

Now consider the zonal piece of the sigma-correction term from equation (6.38)

Pox =g 3y dxudyudhu u FAY(FAX(p) 5;H) /dxu. (6.64)
ik

Transferring the forward average FAY to a backward average BAY leads to
Pax = g S BAY(dyudhu u) FAX(p) 5;H, (6.65)

where boundary terms vanish. Introducing the zonal thickness weighted advective
transport velocity (6.46) yields

Pax =g S dyteuh_et FAX(p) 6;H. (6.66)

Moving the difference operator 6;H = H;,1 — H; from the depth H to the remaining
terms gives

Pox = —g Z H 6;(dyte FAX(p) uh_et) = —g z Hdat BDX_ET(FAX(p) uh_et),
(6.67)
where boundary terms vanish. Similar manipulations with the meridional piece of
P, lead to

Pr=—g Z Hdat [BDX _ET(FAX(p) uh_et) + BDY_NT(FAY (p) vh_nt)]. (6.68)

The P, term accounts for alterations in the potential energy due to the use of partial
bottom cells.
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P dxtn(i,j) o
A A
dyt(i.)
< dxt(ij) {100 dyte(i,)

Y Y

Figure 6.2: Time independent horizontal grid distances (meters) used for the tracer
cell Tj; in MOMA4. dxt; ; and dyt; ; are the grid distances of the tracer cell in the
generalized zonal and meridional directions, and dat; j = dxt; jdyt; ; is the area of
the cell. The grid distance dxtn; ; is the zonal width of the north face of a tracer cell,
and dyte; j is the meridional width of the east face. Note that the tracer point T; ; is
not generally at the center of the tracer cell. Distances are functions of both i and j
due to the use of generalized orthogonal coordinates.

6.2.3.5 Summary

In summary, the projection of the horizontal velocity onto the downgradient pres-
sure field is given by

= — > daudhu [u FDX_NT(FAY(p)) +vFDY_ET(FAX(p))]
ik
+ g daudhu [uFAY(FAX(p) 6;H)/dxu + v FAX(FAY (p) ;H) /dyu].
ik

1
= —Ndat;; w_bty + dhwt, w bty o + — N dhtepd
g j <P1 0 g% k % Pk o % kP th)

— g Hdat [BDX_ET(FAX(p) uh-et) + BDY_NT(FAY (p) vhnt)] ~ (6.69)

The MOM4 diagnostic energy conversion error has proven to be quite useful for de-
tecting improper discretization of various algorithms. That diagnostic computes
the left hand side of equation (6.69) and compares to the right hand side. Differ-
ences are due to errors in the code. The reason this diagnostic is so effective is that
it involves advective velocities on the tracer cells, both tracer and velocity cell dis-
tances, the calculation of pressure, and details of partial cells. Each require precise
discretization in order to ensure an energy conversion error at the roundoff level.
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6.3 Kinetic energy advection

This section illustrates how second order accurate centered discrete advection con-
serves globally integrated discrete kinetic energy for a rigid lid Boussinesq model.
Notably, such variance or energy conserving advection schemes are not so useful for
tracer transport due to their relatively large dispersion errors (e.g., [

Yet second order methods remain the norm for velocity advection in most z-coordinate
ocean models based on the original [ ] code, such as MOM. For the more
general case with a free surface, the integrated advection term reduces to generally
nonzero boundary contributions.

6.3.1 Continuum results

Recall from Section 6.1.3 that the kinetic energy per mass in a hydrostatic fluid
is written L = u” - u”/2, where pu” = p,u is the horizontal component to the
linear momentum density (Section 6.1.2). For the Boussinesq fluid, v¥ = v, so the
distinction between velocities is only relevant for the non-Boussinesq case. Let us
now define the volume integral of the scalar product of horizontal velocity u” and
the velocity advection terms in equation (6.3) as

E—/qup-[V-(vup)—I—M(i/\pv")]. (6.70)

The advection metric term drops out trivially. For clarity, we selectively expose
tensor labels on the horizontal velocity components to rewrite the divergence term
as

ubh V. (vub) = V-(vu’-uf)—(vub) -Vub
= 2V-(vK)—-v-VK
= V- (vK)+KV-v
= V- (vK) =K (pt/po),

where the continuity equation p; = —p, V - v was used in the last step. For a
Boussinesq fluid, similar manipulations lead to

Uy V- (Vi) =V - (vK), (6.71)

where use was made of the non-divergence condition V - v = 0. Integration over
the ocean domain and use of the surface and bottom kinematic boundary condi-
tions leads to the non-Boussinesq result

po Aup = /dVICp,t—po /dAIC(w—u-Vn)
z=n

= [avKei+ [ dAK (puge—pmy) (6.72)

zZ=n

and to the Boussinesq result

Ap = / JAKYV -U. 6.73)
z=n
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For a rigid lid Boussinesq model with zero fresh water forcing, Ag = 0. More
general models have nonzero A due either to boundary contributions and/or di-
latations of fluid parcels/columns.

6.3.2 B-grid results

We first verify that the scalar product of horizontal velocity and the advection met-
ric term trivially vanishes at each grid point. Similar manipulations are appropriate
for the Coriolis term. Written as in the numerical model, keeping only grid labels
of relevance, we have

2
w M(2zAu) = S up ub_ (uf dhldy — ub dh2dx) = 0. (6.74)

n=1

In this equation,

dhldy = d,Indx (6.75)
dh2dx = 0yIndy (6.76)

are the model arrays carrying information about the partial derivatives of the grid
spacing in the two orthogonal directions. The sum in equation (6.74) vanishes triv-
ially at each grid point upon writing out the two terms.

We next consider the scalar product of the horizontal convergence term with the
horizontal velocity u?, and integrate over the full ocean

— Aporz =
'Zk dau dhuw® - | BDX_EU(uh_eux FAX(u”))+ BDY_NU(vh_nu*FAY (u”))| /dhu.
" (6.77)
MOM4 uses the following forward averaging operators
FAX(a) = (ajz1+a;)/2 (6.78)
FAY(a) = (aj41+a;)/2. (6.79)

These operators are the unweighted averages used to estimate velocity on the ve-
locity cell faces. They are used to define the centered difference advective fluxes of
velocity. MOM4 also uses the backward derivative operators

dyue;ja; — dyue; 1 ja; 1

BDX_EU(a) = T (6.80)
L]

dxun;ja; —dxun;; 1a; 1

BDY_NU(a) = (6.81)

daui,j

These backward derivative operators act on fields defined at the east and north face
of velocity cells, respectively (see Figure 6.3 for definitions of grid distances).

As detailed in Chapter 5, thickness weighted horizontal advective velocities
uh_eu and vh_nu are defined in MOM4 by remapping the horizontal advective ve-
locities uh_et and vh_nt, defined in Section 6.2.3.1, onto the velocity cell faces. They
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satisfy continuity for each velocity cell

w_buy = w_buy_1 + BDX_EU(uh_euy) + BDY_NU (vh-nuy) + dhuy 0¢ (px/po)-
(6.82)
In this equation, w_bu is vertical advective velocity component defined at the bot-
tom face of the velocity cells. It is defined as a remapped version? of the analogous
advective velocity on the bottom of tracer cells (equations (6.52)-(6.54)). The thick-
ness dhu is the thickness of the velocity cell, and py is the density in this cell. Both
quantities are defined as remapped versions of the tracer cell thickness and densi-
ties, respectively, using the MOM4 horizontal remap function REMAP_BT_TO_BU.
We now perform the discrete analog of integration by parts. For this purpose,
expand the backwards derivative and average operators on the zonal flux terms,
dropping the j, k labels for brevity

2 % dauuf - BDX_EU(uh_eu » FAX(u’)) =

1
> u? - [dyue; uh_eu;ul | + dyue; uh_eu;uf — dyue;_y uh_eu;_1uf — dyue;_1 uh_eu;_quf ]
= Z u? - u? (dyue; uh_eu; — dyue;_q uh_eu;_1)
+ > uf - (dyue;uh-eu;uf | — dyue;_y uheu;_quf_;). (6.83)

Focus now on the second group of terms, where shifting sum labels leads to

nx
z u?-u? | dyue;_y uh_eu;_1 =
=1
nx+1 nx

z u? | -uldyue;_q uh_eu;_1 — Z u?-u?  dyue;_y uh_eu; 4
=

i=1

nx

[ , L
> ui-u dyue; uh_eu;
i=1

=up, -, . dyue,, uh_eu, —uf - ufdyueo uh_eu. (6.84)

This result vanishes for either solid wall or periodic boundary conditions. Simi-
lar manipulations apply for the meridional term ¥ u” - dau dhu « BDY _NU (vh_nu
FAY (uP)), thus leading to

Apor: = — Z K (dyue; uh_eu; — dyue; 1 uh_eu;_1 + dxun;vh nu; — dxun;_ vhnu; )

= — > daudhu K [BDX_EU(uh_eu) + BDY _NU(vh-nu)| /dhu, (6.85)
where )
ICi,j,k = E ugj,k : qu,k (686)

is the discrete kinetic energy per mass.
Now focus on the vertical advection term. We choose to handle the surface cell
k = 1 separately from the interior cells with k > 1. For the interior cells,

. . Nk
QAU = 3 dawa - [wbuy (w)_ +uf) —wbug (uf +uf, )]
=
= Z dauw_buq (uh - uf) — z dauw buyy (uf - uy, )

Nk
+2 z dau Ky (w_buy_1 — w_buy,).
k=2

2Using the MOM4 mapping function REMAP_BT_TO_BU.
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It is appropriate to set
unk+1 =0 (6.87)

since k = Nk + 1 is interpreted as part of the solid earth, thus leading to
I Nk
—2 Alnterior > dauw-buy (uy-uy) +2 % dau Ky (w-bug_ — w-buy).
k=2

For the surface cell, reference to the semi-discrete momentum budget (6.21) leads
to

2 AL — > dauw buyuf - (uf +uj) — ! > dauuf - (—uf p11;+ po o uf)

(6.88)
which when added to A" yields
Nk
Apert = z dau Ky (w_buy — w_buy_1) + Z dau K1 w_buy
k=2
+(200) 71 Y dauuf - (—uf p1 14+ po o ul). (6.89)

To bring this expression more in line with the continuum results of Section 6.3.1, let
us write

uf, = (uf), —uf) +uf (6.90)
to yield

Nk
Avert =y dau Ky (w-bug — w-bug_1) +y dau Ky w-buy
k=2

+p, 1S dauCi(—pi i+ b ) + (2p0) 1Y daunf - (uf, —uf) pu gu
Nk

= Z dau Ky (w_buy — w_buy_q1) + (2 p,) Z dauuf - (uf, —u}) pw Gw
k=1

(6.91)

where we used equation (6.25) to write p, w_buy_y = p1 1+ — Pwgw- The second

term in equation (6.91) vanishes for the special case of fresh water velocity equal to

the ocean surface velocity. This is the case typically used in ocean climate models.
Combining the results for Aj,,, and A+ renders

Nk
Aporz + Avert = — 5 dau K [BDX_EU(uh-eu) + BDY_NU(vh-nu) + (w-buy_1 — w-buy)]
¥=1
+(2p0)7" > dauuf - (uf, —uf) pw g
Nk
- z dau dhu K 0; (pr/po) + (2 00) 1 Z dauu? - (uf, —uf) pw Juw
=

(6.92)

where the continuity equation (6.82) was used to reach the second equality. For the
Boussinesq model with zero fresh water forcing, or with uf, — uf = 0, then Aj,,, +
Avert = 0, whereas the more general case is nonzero due to the compressibility of
seawater and/or fresh water forcing.
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dxun(i,j)

A

A

dyu(i.j)
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< X0 ! ) dyue(i,j)
xu(i.j)
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Figure 6.3: Time independent horizontal grid distances (meters) used for the ve-
locity cell U;,j in MOMA4. dxu; ; and dyu; ; are the grid distances of the velocity cell
in the generalized zonal and meridional directions, and dau; ; = dxu; ; dyu; ; is the
area of the cell. The grid distance dxun; ; is the zonal width of the north face of
a velocity cell, and dyue; ; is the meridional width of the east face. Note that the
velocity point U; ; is not generally at the center of the velocity cell. Distances are
functions of both i and j due to the use of generalized orthogonal coordinates.

6.4 Kinetic energy in the external and internal modes

We note here a feature of global balances of kinetic energy related to the splitting
of the velocity field into a vertically averaged (external mode) and a deviation from
that average (internal mode). This decomposition prompts an analysis of the global
kinetic energy budget taking the split into account, where we introduce a depth
averaging operator

— 1
V= [ dew (699)
~-H
and deviations from the depth average
p=1p—1. (6.94)

Using this notation, the horizontal velocity is split into its external and internal
modes
u=u"+u. (6.95)

Substituting these velocities into the kinetic energy per unit mass yields
1 ~ ~
Kzi(ﬁz-ﬁz—i—u-u—I—Zﬁz-u). (6.96)

The depth averaged kinetic energy per mass is given by

K= S (@ T 4T ). (6.97)

g
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Note the decoupling of the external and internal modes when vertically integrating.
Hence, the depth averaged kinetic energy per mass can be thought of as the sum of
a contribution from the external mode kinetic energy per mass

1
Kext = 5 u®-u’, (6.98)

and the depth averaged internal mode kinetic energy per mass

T=Z 1 = =z
Kiy = Su-u. (6.99)
In particular, this means that when computing the terms contributing to the evolu-
tion of global kinetic energy;, it is sufficient to take the scalar product of the terms in
the equation of motion with the internal and external mode velocities, respectively,
and then volume average. Notably, surface pressure gradients contribute only to

the external mode energy.

6.5 A caveat regarding the tripolar grid

When running MOM4 with spherical coordinates, the diagnosed energetic balances
discussed in Sections 6.2 and 6.3 are maintained to an accuracy far exceeding the
largest nontrivial term in the equations of motion. Hence, as stated in Section 6.1.1,
energetic balances provide a useful means for diagnosing problems with the dis-
cretization of new algorithms.

The implementation of the tripolar grid leads to a problem with the diagnosed
energetic balances. The problem is solely diagnostic, and so does not represent a
fundamental problem with the prognostic equations. The issue is related to the
need to specify exact agreement between terms computed along the bipolar fold
(see Sections 4.2 and 4.3). Redundancies are handled for the prognostic equations
thus ensuring model stability and self-consistency. However, for the energetic di-
agnostics in MOM4, we have not added the additional calls to the domain updates
necessary to maintain the energetic diagnostics. A debugging tool useful for check-
ing that the energetic balances are maintained in the nonlinear bipolar region is to
simply set land at the j = nj row. Setting debug_tripolar_topog = .true. inside the
namelist ocean_topog_nml will perform this step, thus leading to improved energet-
ics. As this step sets land across the Arctic, it is of relevance only for debugging.
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The purpose of this chapter is to interpret the evolution of total ocean tracer con-
tent. It is noted that a fundamental problem of time filtered leap-frog time stepping
schemes is the inability to exactly conserve total mass/volume and tracer. The com-
putation of global adjustments brings back conservation, but at the cost of nonlocal
effects.

7.1 Introduction

Time evolution of the total ocean tracer is determined by its input through the
ocean boundaries and source/sink terms within the interior. Upon time discretiza-
tion, the definition of total ocean tracer becomes dependent on details of the time
stepping scheme. Furthermore, the introduction of explicit time filters, such as the
Robert-Asselin filter used with the leap-frog scheme or time averaging used in the
MOM4 explicit free surface method, alters the evolution of total tracer in a non-
conservative manner. The goal of this chapter is to precisely define what we mean
by total ocean tracer content in light of time discretization details.



118 CHAPTER 7. TOTAL OCEAN MASS AND TRACER CONTENT

7.2 Continuum model budget

Before discussing the discrete issues, let us review the continuum results. The total
ocean tracer mass is given by

My = / (pdV)T. (7.1)

Note that for a Boussinesq fluid, tracer concentration remains a scalar if it is inter-
preted as the tracer mass per volume of a water parcel, since volume is a scalar for
Boussinesq fluids. In this case, the total tracer mass for a Boussinesq fluid is given
by Mt = p, [dV T.

Time evolution of the total tracer mass is determined by sources and sinks of
tracer within the fluid and at the oceanic boundaries. Using the mass and tracer
budgets given in Chapter 3 leads to

0t Mt = 0; </(pdV) T>
:/dA ((pT)znn,t+/dZ (pT),t)

—H

= /dA (T(pn,t—poﬁ-V)—ﬁ'pF)+/(pdV)5

250 (7.2)
_ /dA (prqw N-pF)+/(pdV)8
z=n
— [ aa (prqw—ﬁ pF)+/(pdV)S
z=n
=~ [dapar+ [(pav)s,
z=n

where we used the surface kinematic boundary condition, assumed zero flux through
the solid boundaries and/or periodic lateral boundary conditions, and set the sur-
face tracer flux equal to that coming in from boundary layer model.

7.3 Discrete Boussinesq rigid lid budget

We start our considerations of the discrete budget by focusing on the simplest case,
that being the rigid lid Boussinesq ocean with no surface fresh water fluxes. In this
case, the volume of all model grid cells is constant in time. We also drop interior
source/sink terms and set N = 2, both for purposes of brevity.

The thickness weighted tendency for tracer concentration at a depth k is given
by (see [ ] for a derivation)

0t (hT)y =~V - (huT+hF"), — [(wT+F*), , — (wT+F?),], (7.3)

where w,;, = 0 for the rigid lid. Integrating over the total model volume cancels the
horizontal fluxes so long as there are no tracer sources, such as geothermal heating,
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at the solid boundaries. The volume integrated vertical flux convergence reduces to
an area integral of the surface tracer flux. Hence, exposing some model grid fields
and discrete indices leads to the time tendency

0, ( S datdht T) = — lzjdut Qr = — iZjdatQtf”b (7.4)

ijk

where dht; . is the tracer cell thickness, dat; ; = dxt; ;dyt; ; is the horizontal area
of a tracer cell, and indices are exposed only when needed. Multiplying both sides
by the constant density p, renders the budget for total tracer mass in the rigid lid
Boussinesq fluid.

The balance (7.4) takes on various forms depending on how time is discretized.
Following the approach in MOM, we introduce a leap-frog time stepping scheme
for the tendency of tracer concentration

z dat dht T(t + AT) = Z dat dht TR(T — AT) —2AT z dat Qr, (7.5)
ijk i,jk 1,]

where
TR(T — A1) = T(1 — A1) + («/2) [T(1) — 2T (7 — AT) + TR (1 = 2A7)]  (7.6)

is a Robert-Asselin time filtered version of the lagged tracer concentration (e.g.,
[ ). A weak form of such filtering, with & ~ 0.01 —
0.05, has been found sufficient to suppress much of the splitting between the two
leap-frog branches in MOM4.! However, it is notable that the use of a time fil-
ter compromises the conservation properties of the model. Namely, it alters the
tracer content at each grid point, yet is not associated with a physical source/sink
of tracer. We now discuss this point further.
To reduce clutter, introduce the following expression for domain integrated
tracer mass
T(1) = po Z dat dht T(7), (7.7)
ik

and area integrated surface tracer flux

F(1) = —po Zdat Qr, (7.8)
L]

with positive F indicating tracer added to the ocean domain. 7 represents the total
mass of tracer if T represents mass per volume, or the total ocean heat divided by
C, if T is the potential temperature 8. The budget for total tracer mass now takes
the more tidy form

T(t+ A1) = TR(1 — A1) + 2 A7 F (7). (7.9)

ITime series of prognostic variables, sampled every time step, will generally still show time noise
even with the presence of the Robert-Asselin filter. The noise is most apparent in regions where
temporal variability is strong, such as the equatorial currents. The researcher should judge the level
of noise acceptable for the solution, balanced by the desire not to overdamp the transients by using a
very large filter coefficient.
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Because of the Robert time filter, tracer mass at T + At does not equal that at T — At
plus that input through the ocean surface. That is, time filtering compromises the
discrete balance of total ocean tracer mass. It is as if the flux input via the surface
term F(7) were modified, with the magnitude of the modification depending on
the amount of time filtering applied. This is not a satisfying situation. Yet it is a
necessary consequence of using the time filtered leap-frog scheme. Such will also
be the case with the free surface, where there is a time filter applied to both the
tracer and surface height, thus further compromising the integrity of the conserva-
tion properties. Two-time level schemes, such as predictor-corrector, avoid these
problems via the use of implicit time dissipation, and so are preferable from the
present perspective. Yet we will have more to say on two-time level schemes in
Section 7.6.

To pursue this point a bit further, consider the special case of zero surface tracer
flux for all time, for which case

T(t+ A1) = TR(1 - A1), (7.10)

Hence, there is an apparent time evolution of total tracer content even when there
are no surface fluxes. However, upon assuming 7 constant for all earlier time steps,
one can show inductively that 7 remains constant for all future time steps. As
shown in the next section, the nonlinear product of the time dependent surface
thickness and time dependent tracer concentration, in the presence of separately
applied time filters, leads this conservation statement to be compromised with a
free surface.

7.4 Discrete non-Boussinesq free surface budget

To garner a budget for total tracer mass in the discrete non-Boussinesq free surface
model, we first integrate the tracer budget over the ocean domain and drop bound-
ary terms at solid walls, and use the surface cell budget derived in [ I
In particular, the budget for a surface cell is given by

(po)_l 0t(phT),, =—-V- (huT—|-hFh)Z1 + (0 T)z + o To] + [FZ . ngcurb)],
(7.11)
and for interior cells with k > 1

(po)il at<ph T)Zk ==V (hu T+ hFh)Zk + [(w T)Zk - (w T)qu] + [F.?k - F;kil],
(7.12)
where we dropped source terms for brevity. When integrating over the global do-
main, the horizontal convergence terms drop out due to no-flux side boundary con-
ditions. The vertical fluxes collapse to surface and bottom boundary terms. Focus-

ing on surface fluxes, we have

0; (Z datdhtpT) = F(1), (7.13)
ik

with dht = h the thickness of the tracer cells, and the area integrated surface tracer
flux is determined by fresh water and turbulent fluxes of tracer

F(t) = po y dat [qw Tw — QF"]. (7.14)
)
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Performing a leap-frog time step on the thickness weighted tracer concentration
leads to the conservation statement

T(t+ A1) =T(t— A1) + 2AT F (1), (7.15)
where
T(t)= z dat dht(t) (pT)(7) (7.16)
ik

is the domain integrated tracer mass,

(pT)(7) = p(7) T(x) (7.17)

is the density weighted tracer concentration, and time filtering is briefly ignored.
This conservation statement has the same form as that for the rigid lid. In both
cases, the use of time filters compromises our familiar interpretation of the dis-
crete time budget for total tracer. Additionally, because thickness must be time
stepped separately from the thickness weighted tracer, time filtering is also ap-
plied separately. Hence, upon introducing time filtering, the nonlinear product
of thickness times tracer concentration further compromises the integrity of the
conservation statement. No such issue arises with density, and hence total ocean
mass, since its time stepping is diagnosed by the extrapolation method described
in [ ]and [ ].

7.4.1 Separate time stepping for tracer, density, and thickness

We dissect this result a bit further by separately considering the leap-frog time step-
ping of density, tracer concentration, and thickness

> dot (dht(x) (0 T) (r+ &) — (o) = &)
L]

+ (pT)(7) [dht(T + AT) — dht(T — AT)]> =2AT F(7). (7.18)

This time discretization has the same accuracy as when discretizing the product
hpT as a single object. However, the conservation statement is a bit more compli-
cated in the present approach, as seen in the following. Note that dht(t + A1) —
dht(t — A1) is nonzero only for the surface grid cell. However, for purposes of
symmetry, it is useful to keep it around for all depths.

To proceed, rearrange the previous result and indicate where the time filtered
fields are used in the model’s time stepping.

> dat <[dht(fr) (pT)(t+ At)+dht(t+ A7) (pT)(7)]
ik

— [dhtf (T — AT) (p T)(7) + dht(7) p(T — AT) TR (7 — AT)]) =2AtF(1), (7.19)

where there is no time filtering applied to the density field since it is updated via an
extrapolation method. Furthermore, as detailed in [ ], the time filtered
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ocean surface height takes the form of a time average over the barotropic cycle

__ 1 N

nf (1) = n® (1) = NI nZo n®(t - A1, t,). (7.20)

To isolate the effects of time filtering on the tracer content, we find it convenient
to write

-Zk dat [dht(T) (p T) (T + AT) + dht(T + AT) (p T)(7)]
" - z',]z,k dat [dht(t — AT) (pT) (1) + dht(t) (p T) (T — AT)]
+ Y datdht(t) p(t — AT) [T(7 — AT) — TR (1T — AT)]
+]kz dat p(7) T(7) [dht(T — AT) — dht (T — AT)]
o _2ATF(r). (721)

To bring this equation into a more tidy form, define the two-time level tracer mass

27 (1,7 + At) = 5 dat[dht(7) (pT)(T + At) + dht(t + A1) (pT)(7)] (7.22)
ik

and the time filtered form of this mass

27 (1,74 A7) =

> dat [dnt" (1) p(T + AT) T(T + AT) + dht(T + A1) p(T) TR(7)], (7.23)
ik

thus bringing the conservation statement (7.21) to the form
T(1,T+AT) =T (1= AT, T) + AT F (1) + [TH (Tt — A1, 1) — T (1 — A1, 7)]. (7.24)

This result leads to the following interpretation: consider 7 (7, T + A7) as centered
at T+ At/2 and 7 (T — A7, T) centered at T — At/2. Equation (7.24) then says
that a leap-frog time step At links the two half-time step total tracer mass; Figure
7.1 provides an illustration. The difference 77 (1 — A1, 1) — 7 (T — AT, T) acts as a
source/sink in addition to the physical source/sink At F (7). The size of this time
filtering source can be nontrivial in some situations.

7.4.2 Concerning the tracer and baroclinic time steps

As discussed in [ ], the free surface height is time stepped using a
“big-leap-frog” at the end of the small barotropic sub-cycle. Consequently, it is
natural to update the free surface using the baroclinic time step. However, the
rearrangement used to reach equation (7.19) assumed the same time steps were
used to update tracer and volume. Without equating the two time steps, we cannot
identify a total ocean tracer content. This result is to be expected for the following
reason. The undulating surface height (and undulating volume) closely couples the
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tracer and mass/volume budgets in the surface grid cells, necessitating the use of
equal time steps to maintain a self-consistent time stepping so that tracer mass can
be conserved.

In[ Jand [

it was assumed that the surface height would always be updated using the baro-
clinic time step. However, tests in MOM4 indicate that the time stepping scheme for
the surface height is stable enough to allow 7 to be updated using the tracer time
step. Hence, even for those coarse resolution models where tracer time steps are
typically much larger than baroclinic time steps, it is possible to maintain compati-
bility between the volume and tracer budgets. The usual tricks for quickly spinning-
up coarse resolution ocean models ([ ,

]) are therefore still
available with the MOM4 free surface, all while maintaining volume and tracer
compatibility. Conservation, however, is still compromised due to the time filter-
ing.

7.4.3 MOM4 diagnostics for tracer mass

Equation (7.19) represents a simple rearrangement of the discrete equations as they
are implemented in the ocean model. Hence, the two sides should be equal even if
they are evaluated separately. However, in the development of various algorithms,
it has proven extremely useful to separately diagnose the two sides of this equation
and verify that they are indeed equal, to within some value determined by roundoff
errors. Notably, if the tracer and volume budgets are updated using a different time
step, this diagnostic reveals the extent of the associated tracer non-conservation.
Such is part of the tracer-change diagnostic in MOM4.

In addition to checking the left and right hand sides of equation (7.19) over a
single time step, it is important to check how well the ocean inputs the tracer fluxed
through its surface over a period of time. That is, does the tracer content at some
given time equal to that at an earlier time plus the total tracer input through the
surface during the intermediate times? We already answered this question in the
negative for the rigid lid, in which case the mis-match arises from the use of time
filters. The negative answer applies also for the free surface, again because of time
filters as seen by equation (7.24). We now consider details in order to formulate the
M