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What is the origin of tropospheric ozone?
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Number of People Living in U.S. Counties Violating
National Ambient Air Quality Standards (NAAQS) in 2001
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The Risk Increment Above the Background is Considered
when setting the NAAQS for Ozone
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—->Need a quantitative estimate for background ozone

- EPA chose a constant value (40 ppbv) in previous
review of O, standard



Range of “"background O;"” estimates in U.S. surface air

Range from prior
global modeling studies

84 ppbv: threshold for
currentU.S. O;standard

UsedbyEPA O, (ppbv)

toassess health  grequent observations
riskfromO; (1996) previously attributed to

- natural background
Range fromthis work [Lefohn et al., 2001]

[Fiore et al., 2003]

The U.S. EPA considers background levels
when setting the NAAQS



“POLICY RELEVANT BACKGROUND” OZONE:

Ozone concentrations that would existin the absence of
anthropogenic emissions from North America [EPA CD, 2005]
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Policy Relevant Background is not directly observable
- Must be estimated with models
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Approach: Insights from two chemical transport models
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Ozone Budgets in IPCC-AR4 Tropospheric Chemistry Models

CHASER CTM

8000 | CHASER GCM
— X 19-Model Mean [FRsG¢

-1 GEOS -CHEM

¢ MOZART GFDL
A GEOS-CHEM |girxe

P -
f\ X gmigis
LLNL-IMPACT

6000

—

N
O
S
)

]

|

|

A LMDz INCA
= LMDz INCA¢
NCAR

STOCHEM HadAN3
2000 VK B

Ozone (Tg yr')
v

AR4 budgets c/o
THB

Jerome Drevet g g UM CAM

David Stevenson 0 mﬁ;'m HadGEM

Frank Dentener PROD LOSS DEP STRAT ULAQ




Approach: 2001 CASTNet Observations (EPA, NPS)
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1. quantify PRB O; and its various sources

2. diagnose origin of springtime high-O, events at
remote U.S. sites, previously attributed to natural,
stratospheric influence



Case Study #1: Voyageurs National Park, Minnesota (May-June 2001)

Lefohn et al. [2001] suggest a stratospheric
source as the likely origin of high-O, events
frequently observed in June

* CASTNet observations
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Case Study #2: Yellowstone National Park, Wyoming (March-May 2001)

* CASTNet observations

Frequent high-O, events previously A Model } A =E:|£|lli:?i2?1l
attributed to natural, stratospheric source ¢ PRB __Hemispheric
[Lefohn et al., 2001] }A ~ pollution
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Background at high-altitude site (2.5 km) not nhecessarily
representative of background contribution at low-lying sites



Both models show that PRB ozone is higher at high-altitude site

* CASTNet observations & GEOS-CHEM Model A MIOZART Model
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PRB ozone is lower under polluted conditions:
typically below 25 ppbv

Daily mean afternoon O, at 58 low-elevation U.S. CASTNet sites
June-July-August
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- Assuming constant 40 ppbv background underestimates health
risks on most polluted days
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Compiling daily afternoon (1-5 p.m. mean) surface ozone fromall
CASTNet sites for March-October 2001:

PRB ozone is typically 20-35 ppbv
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—Hemispheric Pollution enhances U.S. PRB by 814 ppbv
—>Prior work suggests 6 ppbv from anthrop. CH, on average



Radiative Forcing of Climate from Preindustrial to Present:
Important Contributions from Methane and Ozone
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Hansen, Scientific American, 2004



Double dividend of Methane Controls:
Decreased greenhouse warming and improved air quality

AIR QUALITY: Number of U.S.

CLIMATE: Radiative Forcing (W m?) summer grid-square days with
O3> 80 ppbv
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- Methane links air quality and climate via background ozone

Fiore et al., GRL, 2002



Response of Global Surface Ozone to 50% decrease in global methane
emissions (actually changing uniform concentration from 1700 to 1000 ppbv)

Jun-Jul-Aug

e QOzone decreases by 1-6 ppb
o« ~3ppb over land in US summer
¥ ~60% of reduction in 10 yr; ~80% in 20 yr.




How Much Methane Can Be Reduced?

Ozone reduction (ppb)
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Top bar: IEA (2003), for 5 industrial sectors.
Lower bar: EPA (2003), for 4 industrial and 1 agricultural sector.

Comparison: Clean Air Interstate Rule (proposed) reduces 0.86 ppb
over the eastern US, at $0.88 billion yr!, through NO, control.

West & Fiore, ES&T, 2005



Tropospheric ozone response to anthropogenic methane
emission changes is fairly linear
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Shindell et al.,, 2005 report that tropospheric ozone responds linearly
to 10, 25, 50, 75, 100% decreases in anthropogenic CH,



Anthropogenic

Natural

Methane Emissions in EDGAR inventory
early 1990s; Tg CH, yr!

Energy, landfills, wastewater |95
Ruminants 93
Rice 60
Biomass burning 86
Ocean 10
Biogenic 204
TOTAL 547

- Are ozone decreases independent of CH, source location?
Cut Global Anthropogenic by 40%: (1) All in Asia

(2) Everywherein the globe




METHANE

OZONE

July 2000 surface O; change mainly independent of CH, source location,

slightly larger response in source region

(Transient simulations with EDGAR 1990 emissions, beginning 1990)
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U.S. Surface Afternoon Ozone Response ih Summer
also independent of methane emission location
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- Stronger Sensitivity in NO _-saturated regions (Los Angeles)



Local CH, oxidation contributes up to ~30% of the total
decrease In surface O; from lowering CH, concentrations
in a NO,-saturated region

Change in MOZART-2 surface afternoon (1-5 p.m.) O; concentration
after 1 day, when a 300 ppbv decrease in CH, concentrations
is imposed below 800 hPa in Los Angeles
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CLIMATE IMPACTS: Change in July 2000 Trop. O; Columns
(to 200 hPa)
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Tropospheric O; column response is
independent of CH,; emission location
except for small (~10%) local changes




AIR POLLUTION IMPACTS: 2030 Avoided Premature
Mortalities (A2 scenario - 65 Tg CH, emissions)

Change in 8-hr summer surface ozone from a 20%
decrease in global anthrop. methane emissions

.-

Assume 25 ppb threshold.,
CH, reductions starting in 2000

Reducing anthrop. CH, emis.
by 20% (starting in 2000):

-- decreases global surface
ozonhe (~1 ppbv in populated
areas)

-- prevents ~34,000 premature
deaths in 2030 < 0 40 80 120 160 200
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West et al., 2005




Conclusions

1. Policy-Relevant Background in surface air over the United States:

-- 2515 ppbv at low-elevation sites in summer

-- varies with season, altitude; anti-correlated with high domestic O,

-- 844 ppbv from hemispheric pollution (~5-7 ppbv from anthr. CH,)

=40 ppbv previously used by EPA underestimates health risks

—international negotiations to reduce hemispheric background
would facilitate compliance with more stringent standards

2. 20%b reductions in anthrop. methane emissions possible now:
-- reduce surface ozone globally by ~1 ppbv in populated regions
-- lower global radiative forcing by ~0.13 W m2

-- avoid 34,000 premature mortalities in 2030

3. Climate and air quality benefits from controls on anthropogenic

methane emissions are largely independent of source location

-- small enhancements (~10%b) in source region

-- enhanced surface ozone response (up to ~30%b total response) to
CH, changes in NO, -saturated regions
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